电脑知识|欧美黑人一区二区三区|软件|欧美黑人一级爽快片淫片高清|系统|欧美黑人狂野猛交老妇|数据库|服务器|编程开发|网络运营|知识问答|技术教程文章 - 好吧啦网

您的位置:首頁技術文章
文章詳情頁

Pandas數據類型之category的用法

瀏覽:124日期:2022-06-15 16:13:42
創建category使用Series創建

在創建Series的同時添加dtype='category'就可以創建好category了。category分為兩部分,一部分是order,一部分是字面量:

In [1]: s = pd.Series(['a', 'b', 'c', 'a'], dtype='category')In [2]: sOut[2]: 0 a1 b2 c3 adtype: categoryCategories (3, object): [’a’, ’b’, ’c’]

可以將DF中的Series轉換為category:

In [3]: df = pd.DataFrame({'A': ['a', 'b', 'c', 'a']})In [4]: df['B'] = df['A'].astype('category')In [5]: df['B']Out[32]: 0 a1 b2 c3 aName: B, dtype: categoryCategories (3, object): [a, b, c]

可以創建好一個pandas.Categorical ,將其作為參數傳遞給Series:

In [10]: raw_cat = pd.Categorical( ....: ['a', 'b', 'c', 'a'], categories=['b', 'c', 'd'], ordered=False ....: ) ....: In [11]: s = pd.Series(raw_cat)In [12]: sOut[12]: 0 NaN1 b2 c3 NaNdtype: categoryCategories (3, object): [’b’, ’c’, ’d’]使用DF創建

創建DataFrame的時候,也可以傳入 dtype='category':

In [17]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}, dtype='category')In [18]: df.dtypesOut[18]: A categoryB categorydtype: object

DF中的A和B都是一個category:

In [19]: df['A']Out[19]: 0 a1 b2 c3 aName: A, dtype: categoryCategories (3, object): [’a’, ’b’, ’c’]In [20]: df['B']Out[20]: 0 b1 c2 c3 dName: B, dtype: categoryCategories (3, object): [’b’, ’c’, ’d’]

或者使用df.astype('category')將DF中所有的Series轉換為category:

In [21]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')})In [22]: df_cat = df.astype('category')In [23]: df_cat.dtypesOut[23]: A categoryB categorydtype: object創建控制

默認情況下傳入dtype=’category’ 創建出來的category使用的是默認值:

1.Categories是從數據中推斷出來的。

2.Categories是沒有大小順序的。

可以顯示創建CategoricalDtype來修改上面的兩個默認值:

In [26]: from pandas.api.types import CategoricalDtypeIn [27]: s = pd.Series(['a', 'b', 'c', 'a'])In [28]: cat_type = CategoricalDtype(categories=['b', 'c', 'd'], ordered=True)In [29]: s_cat = s.astype(cat_type)In [30]: s_catOut[30]: 0 NaN1 b2 c3 NaNdtype: categoryCategories (3, object): [’b’ < ’c’ < ’d’]

同樣的CategoricalDtype還可以用在DF中:

In [31]: from pandas.api.types import CategoricalDtypeIn [32]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')})In [33]: cat_type = CategoricalDtype(categories=list('abcd'), ordered=True)In [34]: df_cat = df.astype(cat_type)In [35]: df_cat['A']Out[35]: 0 a1 b2 c3 aName: A, dtype: categoryCategories (4, object): [’a’ < ’b’ < ’c’ < ’d’]In [36]: df_cat['B']Out[36]: 0 b1 c2 c3 dName: B, dtype: categoryCategories (4, object): [’a’ < ’b’ < ’c’ < ’d’]轉換為原始類型

使用Series.astype(original_dtype) 或者 np.asarray(categorical)可以將Category轉換為原始類型:

In [39]: s = pd.Series(['a', 'b', 'c', 'a'])In [40]: sOut[40]: 0 a1 b2 c3 adtype: objectIn [41]: s2 = s.astype('category')In [42]: s2Out[42]: 0 a1 b2 c3 adtype: categoryCategories (3, object): [’a’, ’b’, ’c’]In [43]: s2.astype(str)Out[43]: 0 a1 b2 c3 adtype: objectIn [44]: np.asarray(s2)Out[44]: array([’a’, ’b’, ’c’, ’a’], dtype=object)categories的操作獲取category的屬性

Categorical數據有 categories 和 ordered 兩個屬性。可以通過s.cat.categories 和 s.cat.ordered來獲取:

In [57]: s = pd.Series(['a', 'b', 'c', 'a'], dtype='category')In [58]: s.cat.categoriesOut[58]: Index([’a’, ’b’, ’c’], dtype=’object’)In [59]: s.cat.orderedOut[59]: False

重排category的順序:

In [60]: s = pd.Series(pd.Categorical(['a', 'b', 'c', 'a'], categories=['c', 'b', 'a']))In [61]: s.cat.categoriesOut[61]: Index([’c’, ’b’, ’a’], dtype=’object’)In [62]: s.cat.orderedOut[62]: False重命名categories

通過給s.cat.categories賦值可以重命名categories:

In [67]: s = pd.Series(['a', 'b', 'c', 'a'], dtype='category')In [68]: sOut[68]: 0 a1 b2 c3 adtype: categoryCategories (3, object): [’a’, ’b’, ’c’]In [69]: s.cat.categories = ['Group %s' % g for g in s.cat.categories]In [70]: sOut[70]: 0 Group a1 Group b2 Group c3 Group adtype: categoryCategories (3, object): [’Group a’, ’Group b’, ’Group c’]

使用rename_categories可以達到同樣的效果:

In [71]: s = s.cat.rename_categories([1, 2, 3])In [72]: sOut[72]: 0 11 22 33 1dtype: categoryCategories (3, int64): [1, 2, 3]

或者使用字典對象:

# You can also pass a dict-like object to map the renamingIn [73]: s = s.cat.rename_categories({1: 'x', 2: 'y', 3: 'z'})In [74]: sOut[74]: 0 x1 y2 z3 xdtype: categoryCategories (3, object): [’x’, ’y’, ’z’]使用add_categories添加category

可以使用add_categories來添加category:

In [77]: s = s.cat.add_categories([4])In [78]: s.cat.categoriesOut[78]: Index([’x’, ’y’, ’z’, 4], dtype=’object’)In [79]: sOut[79]: 0 x1 y2 z3 xdtype: categoryCategories (4, object): [’x’, ’y’, ’z’, 4]使用remove_categories刪除category

In [80]: s = s.cat.remove_categories([4])In [81]: sOut[81]: 0 x1 y2 z3 xdtype: categoryCategories (3, object): [’x’, ’y’, ’z’]刪除未使用的cagtegory

In [82]: s = pd.Series(pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c', 'd']))In [83]: sOut[83]: 0 a1 b2 adtype: categoryCategories (4, object): [’a’, ’b’, ’c’, ’d’]In [84]: s.cat.remove_unused_categories()Out[84]: 0 a1 b2 adtype: categoryCategories (2, object): [’a’, ’b’]重置cagtegory

使用set_categories()可以同時進行添加和刪除category操作:

In [85]: s = pd.Series(['one', 'two', 'four', '-'], dtype='category')In [86]: sOut[86]: 0 one1 two2 four3 -dtype: categoryCategories (4, object): [’-’, ’four’, ’one’, ’two’]In [87]: s = s.cat.set_categories(['one', 'two', 'three', 'four'])In [88]: sOut[88]: 0 one1 two2 four3 NaNdtype: categoryCategories (4, object): [’one’, ’two’, ’three’, ’four’]category排序

如果category創建的時候帶有 ordered=True , 那么可以對其進行排序操作:

In [91]: s = pd.Series(['a', 'b', 'c', 'a']).astype(CategoricalDtype(ordered=True))In [92]: s.sort_values(inplace=True)In [93]: sOut[93]: 0 a3 a1 b2 cdtype: categoryCategories (3, object): [’a’ < ’b’ < ’c’]In [94]: s.min(), s.max()Out[94]: (’a’, ’c’)

可以使用 as_ordered() 或者 as_unordered() 來強制排序或者不排序:

In [95]: s.cat.as_ordered()Out[95]: 0 a3 a1 b2 cdtype: categoryCategories (3, object): [’a’ < ’b’ < ’c’]In [96]: s.cat.as_unordered()Out[96]: 0 a3 a1 b2 cdtype: categoryCategories (3, object): [’a’, ’b’, ’c’]重排序

使用Categorical.reorder_categories() 可以對現有的category進行重排序:

In [103]: s = pd.Series([1, 2, 3, 1], dtype='category')In [104]: s = s.cat.reorder_categories([2, 3, 1], ordered=True)In [105]: sOut[105]: 0 11 22 33 1dtype: categoryCategories (3, int64): [2 < 3 < 1]多列排序

sort_values 支持多列進行排序:

In [109]: dfs = pd.DataFrame( .....: { .....: 'A': pd.Categorical( .....: list('bbeebbaa'), .....: categories=['e', 'a', 'b'], .....: ordered=True, .....: ), .....: 'B': [1, 2, 1, 2, 2, 1, 2, 1], .....: } .....: ) .....: In [110]: dfs.sort_values(by=['A', 'B'])Out[110]: A B2 e 13 e 27 a 16 a 20 b 15 b 11 b 24 b 2比較操作

如果創建的時候設置了ordered==True ,那么category之間就可以進行比較操作。支持 ==, !=, >, >=, <, 和 <=這些操作符。

In [113]: cat = pd.Series([1, 2, 3]).astype(CategoricalDtype([3, 2, 1], ordered=True))In [114]: cat_base = pd.Series([2, 2, 2]).astype(CategoricalDtype([3, 2, 1], ordered=True))In [115]: cat_base2 = pd.Series([2, 2, 2]).astype(CategoricalDtype(ordered=True))In [119]: cat > cat_baseOut[119]: 0 True1 False2 Falsedtype: boolIn [120]: cat > 2Out[120]: 0 True1 False2 Falsedtype: bool其他操作

Cagetory本質上來說還是一個Series,所以Series的操作category基本上都可以使用,比如: Series.min(), Series.max() 和 Series.mode()。

value_counts:

In [131]: s = pd.Series(pd.Categorical(['a', 'b', 'c', 'c'], categories=['c', 'a', 'b', 'd']))In [132]: s.value_counts()Out[132]: c 2a 1b 1d 0dtype: int64

DataFrame.sum():

In [133]: columns = pd.Categorical( .....: ['One', 'One', 'Two'], categories=['One', 'Two', 'Three'], ordered=True .....: ) .....: In [134]: df = pd.DataFrame( .....: data=[[1, 2, 3], [4, 5, 6]], .....: columns=pd.MultiIndex.from_arrays([['A', 'B', 'B'], columns]), .....: ) .....: In [135]: df.sum(axis=1, level=1)Out[135]: One Two Three0 3 3 01 9 6 0

Groupby:

In [136]: cats = pd.Categorical( .....: ['a', 'b', 'b', 'b', 'c', 'c', 'c'], categories=['a', 'b', 'c', 'd'] .....: ) .....: In [137]: df = pd.DataFrame({'cats': cats, 'values': [1, 2, 2, 2, 3, 4, 5]})In [138]: df.groupby('cats').mean()Out[138]: valuescatsa1.0b2.0c4.0dNaNIn [139]: cats2 = pd.Categorical(['a', 'a', 'b', 'b'], categories=['a', 'b', 'c'])In [140]: df2 = pd.DataFrame( .....: { .....: 'cats': cats2, .....: 'B': ['c', 'd', 'c', 'd'], .....: 'values': [1, 2, 3, 4], .....: } .....: ) .....: In [141]: df2.groupby(['cats', 'B']).mean()Out[141]: valuescats Ba c 1.0 d 2.0b c 3.0 d 4.0c c NaN d NaN

Pivot tables:

In [142]: raw_cat = pd.Categorical(['a', 'a', 'b', 'b'], categories=['a', 'b', 'c'])In [143]: df = pd.DataFrame({'A': raw_cat, 'B': ['c', 'd', 'c', 'd'], 'values': [1, 2, 3, 4]})In [144]: pd.pivot_table(df, values='values', index=['A', 'B'])Out[144]: valuesA Ba c 1 d 2b c 3 d 4

到此這篇關于Pandas數據類型之category的用法的文章就介紹到這了,更多相關category的用法內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Pandas category
相關文章:
主站蜘蛛池模板: 电力测功机,电涡流测功机,磁粉制动器,南通远辰曳引机测试台 | 滁州高低温冲击试验箱厂家_安徽高低温试验箱价格|安徽希尔伯特 | 百度关键词优化_网站优化_SEO价格 - 云无限好排名 | 劳动法网-专业的劳动法和劳动争议仲裁服务网 | 珠光砂保温板-一体化保温板-有釉面发泡陶瓷保温板-杭州一体化建筑材料 | 齿轮减速马达一体式_蜗轮蜗杆减速机配电机-德国BOSERL齿轮减速电动机生产厂家 | 安徽泰科检测科技有限公司【官方网站】 | 爆破器材运输车|烟花爆竹运输车|1-9类危险品厢式运输车|湖北江南专用特种汽车有限公司 | 球形钽粉_球形钨粉_纳米粉末_难熔金属粉末-广东银纳官网 | 月嫂_保姆_育婴_催乳_母婴护理_产后康复_养老护理-吉祥到家家政 硫酸亚铁-聚合硫酸铁-除氟除磷剂-复合碳源-污水处理药剂厂家—长隆科技 | 塑料熔指仪-塑料熔融指数仪-熔体流动速率试验机-广东宏拓仪器科技有限公司 | 天津电机维修|水泵维修-天津晟佳机电设备有限公司 | 三价铬_环保铬_环保电镀_东莞共盈新材料贸易有限公司 | 铝合金线槽_铝型材加工_空调挡水板厂家-江阴炜福金属制品有限公司 | 高柔性拖链电缆-聚氨酯卷筒电缆-柔性屏蔽电缆厂家-玖泰电缆 | 空气弹簧|橡胶气囊|橡胶空气弹簧-上海松夏减震器有限公司 | 撕碎机_轮胎破碎机_粉碎机_回收生产线厂家_东莞华达机械有限公司 | 皮带机-带式输送机价格-固定式胶带机生产厂家-河南坤威机械 | 24位ADC|8位MCU-芯易德科技有限公司 | 哲力实业_专注汽车涂料汽车漆研发生产_汽车漆|修补油漆品牌厂家 长沙一级消防工程公司_智能化弱电_机电安装_亮化工程专业施工承包_湖南公共安全工程有限公司 | 无味渗透剂,泡沫抑尘剂,烷基糖苷-威海威能化工有限公司 | 一体化污水处理设备,一体化污水设备厂家-宜兴市福源水处理设备有限公司 | 慢回弹测试仪-落球回弹测试仪-北京冠测精电仪器设备有限公司 | 锂电混合机-新能源混合机-正极材料混料机-高镍,三元材料混料机-负极,包覆混合机-贝尔专业混合混料搅拌机械系统设备厂家 | 济南品牌包装设计公司_济南VI标志设计公司_山东锐尚文化传播 | 冷轧机|两肋冷轧机|扁钢冷轧机|倒立式拉丝机|钢筋拔丝机|收线机-巩义市华瑞重工机械制造有限公司 | 工业胀紧套_万向节联轴器_链条-规格齐全-型号选购-非标订做-厂家批发价格-上海乙谛精密机械有限公司 | 河南砖机首页-全自动液压免烧砖机,小型砌块水泥砖机厂家[十年老厂] | PC阳光板-PC耐力板-阳光板雨棚-耐力板雨棚,厂家定制[优尼科板材] | 全自动面膜机_面膜折叠机价格_面膜灌装机定制_高速折棉机厂家-深圳市益豪科技有限公司 | 高压直流电源_特种变压器_变压器铁芯-希恩变压器定制厂家 | 会议会展活动拍摄_年会庆典演出跟拍_摄影摄像直播-艾木传媒 | Dataforth隔离信号调理模块-信号放大模块-加速度振动传感器-北京康泰电子有限公司 | 空气净化器租赁,空气净化器出租,全国直租_奥司汀净化器租赁 | 济南铝方通-济南铝方通价格-济南方通厂家-山东鲁方通建材有限公司 | 机构创新组合设计实验台_液压实验台_气动实训台-戴育教仪厂 | 薄壁轴承-等截面薄壁轴承生产厂家-洛阳薄壁精密轴承有限公司 | 首页-瓜尔胶系列-化工单体系列-油田压裂助剂-瓜尔胶厂家-山东广浦生物科技有限公司 | 低压载波电能表-单相导轨式电能表-华邦电力科技股份有限公司-智能物联网综合管理平台 | 特种电缆厂家-硅橡胶耐高温电缆-耐低温补偿导线-安徽万邦特种电缆有限公司 | 电竞学校_电子竞技培训学校学院-梦竞未来电竞学校官网 |