电脑知识|欧美黑人一区二区三区|软件|欧美黑人一级爽快片淫片高清|系统|欧美黑人狂野猛交老妇|数据库|服务器|编程开发|网络运营|知识问答|技术教程文章 - 好吧啦网

您的位置:首頁技術文章
文章詳情頁

python實現canny邊緣檢測

瀏覽:6日期:2022-07-11 11:46:01

canny邊緣檢測原理

canny邊緣檢測共有5部分組成,下邊我會分別來介紹。

1 高斯模糊(略)

2 計算梯度幅值和方向。

可選用的模板:soble算子、Prewitt算子、Roberts模板等等;

一般采用soble算子,OpenCV也是如此,利用soble水平和垂直算子與輸入圖像卷積計算dx、dy:

python實現canny邊緣檢測

進一步可以得到圖像梯度的幅值:

python實現canny邊緣檢測

為了簡化計算,幅值也可以作如下近似:

python實現canny邊緣檢測

角度為:

python實現canny邊緣檢測

如下圖表示了中心點的梯度向量、方位角以及邊緣方向(任一點的邊緣與梯度向量正交) :

python實現canny邊緣檢測

θ = θm = arctan(dy/dx)(邊緣方向)α = θ + 90= arctan(dy/dx) + 90(梯度方向)

3、根據角度對幅值進行非極大值抑制

劃重點:是沿著梯度方向對幅值進行非極大值抑制,而非邊緣方向,這里初學者容易弄混。

例如:3*3區域內,邊緣可以劃分為垂直、水平、45°、135°4個方向,同樣,梯度反向也為四個方向(與邊緣方向正交)。因此為了進行非極大值,將所有可能的方向量化為4個方向,如下圖:

python實現canny邊緣檢測

python實現canny邊緣檢測

即梯度方向分別為

α = 90

α = 45

α = 0

α = -45

非極大值抑制即為沿著上述4種類型的梯度方向,比較3*3鄰域內對應鄰域值的大小:

python實現canny邊緣檢測

在每一點上,領域中心 x 與沿著其對應的梯度方向的兩個像素相比,若中心像素為最大值,則保留,否則中心置0,這樣可以抑制非極大值,保留局部梯度最大的點,以得到細化的邊緣。

4、用雙閾值算法檢測和連接邊緣

1選取系數TH和TL,比率為2:1或3:1。(一般取TH=0.3或0.2,TL=0.1);

2 將小于低閾值的點拋棄,賦0;將大于高閾值的點立即標記(這些點為確定邊緣 點),賦1或255;

3將小于高閾值,大于低閾值的點使用8連通區域確定(即:只有與TH像素連接時才會被接受,成為邊緣點,賦 1或255)

python 實現

import cv2import numpy as npm1 = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]])m2 = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])from matplotlib import pyplot as plt# 第一步:完成高斯平滑濾波img = cv2.imread('B9064CF1D57871735CE11A0F368DCF27.jpg', 0)sobel = cv2.Canny(img, 50, 100)cv2.namedWindow(’5’, 0)cv2.resizeWindow('5', 640, 480)cv2.imshow('5', sobel) # 角度值灰度圖img = cv2.GaussianBlur(img, (3, 3), 2)# 第二步:完成一階有限差分計算,計算每一點的梯度幅值與方向img1 = np.zeros(img.shape, dtype='uint8') # 與原圖大小相同theta = np.zeros(img.shape, dtype='float') # 方向矩陣原圖像大小img = cv2.copyMakeBorder(img, 1, 1, 1, 1, borderType=cv2.BORDER_REPLICATE)rows, cols = img.shapefor i in range(1, rows - 1):for j in range(1, cols - 1):Gy = [np.sum(m2 * img[i - 1:i + 2, j - 1:j + 2])]#Gy = (np.dot(np.array([1, 1, 1]), (m2 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))Gx = [np.sum(m1 * img[i - 1:i + 2, j - 1:j + 2])]#Gx = (np.dot(np.array([1, 1, 1]), (m1 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))if Gx[0] == 0:theta[i - 1, j - 1] = 90continueelse:temp = ((np.arctan2(Gy[0], Gx[0])) * 180 / np.pi)+90if Gx[0] * Gy[0] > 0:if Gx[0] > 0:# 第一象線theta[i - 1, j - 1] = np.abs(temp)else:# 第三象線theta[i - 1, j - 1] = (np.abs(temp) - 180)if Gx[0] * Gy[0] < 0:if Gx[0] > 0:# 第四象線theta[i - 1, j - 1] = (-1) * np.abs(temp)else:# 第二象線theta[i - 1, j - 1] = 180 - np.abs(temp)img1[i - 1, j - 1] = (np.sqrt(Gx[0] ** 2 + Gy[0] ** 2))for i in range(1, rows - 2):for j in range(1, cols - 2):if (((theta[i, j] >= -22.5) and (theta[i, j] < 22.5)) or((theta[i, j] <= -157.5) and (theta[i, j] >= -180)) or((theta[i, j] >= 157.5) and (theta[i, j] < 180))):theta[i, j] = 0.0elif (((theta[i, j] >= 22.5) and (theta[i, j] < 67.5)) or((theta[i, j] <= -112.5) and (theta[i, j] >= -157.5))):theta[i, j] = -45.0elif (((theta[i, j] >= 67.5) and (theta[i, j] < 112.5)) or((theta[i, j] <= -67.5) and (theta[i, j] >= -112.5))):theta[i, j] = 90.0elif (((theta[i, j] >= 112.5) and (theta[i, j] < 157.5)) or((theta[i, j] <= -22.5) and (theta[i, j] >= -67.5))):theta[i, j] = 45.0’’’for i in range(1, rows - 1):for j in range(1, cols - 1):Gy = [np.sum(m2 * img[i - 1:i + 2, j - 1:j + 2])]#Gy = (np.dot(np.array([1, 1, 1]), (m2 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))Gx = [np.sum(m1 * img[i - 1:i + 2, j - 1:j + 2])]#Gx = (np.dot(np.array([1, 1, 1]), (m1 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))if Gx[0] == 0:theta[i - 1, j - 1] = 90continueelse:temp = (np.arctan2(Gy[0], Gx[0])) * 180 / np.pi)if Gx[0] * Gy[0] > 0:if Gx[0] > 0:# 第一象線theta[i - 1, j - 1] = np.abs(temp)else:# 第三象線theta[i - 1, j - 1] = (np.abs(temp) - 180)if Gx[0] * Gy[0] < 0:if Gx[0] > 0:# 第四象線theta[i - 1, j - 1] = (-1) * np.abs(temp)else:# 第二象線theta[i - 1, j - 1] = 180 - np.abs(temp)img1[i - 1, j - 1] = (np.sqrt(Gx[0] ** 2 + Gy[0] ** 2))for i in range(1, rows - 2):for j in range(1, cols - 2):if (((theta[i, j] >= -22.5) and (theta[i, j] < 22.5)) or((theta[i, j] <= -157.5) and (theta[i, j] >= -180)) or((theta[i, j] >= 157.5) and (theta[i, j] < 180))):theta[i, j] = 90.0elif (((theta[i, j] >= 22.5) and (theta[i, j] < 67.5)) or((theta[i, j] <= -112.5) and (theta[i, j] >= -157.5))):theta[i, j] = 45.0elif (((theta[i, j] >= 67.5) and (theta[i, j] < 112.5)) or((theta[i, j] <= -67.5) and (theta[i, j] >= -112.5))):theta[i, j] = 0.0elif (((theta[i, j] >= 112.5) and (theta[i, j] < 157.5)) or((theta[i, j] <= -22.5) and (theta[i, j] >= -67.5))):theta[i, j] = -45.0’’’# 第三步:進行 非極大值抑制計算img2 = np.zeros(img1.shape) # 非極大值抑制圖像矩陣for i in range(1, img2.shape[0] - 1):for j in range(1, img2.shape[1] - 1):# 0度j不變if (theta[i, j] == 0.0) and (img1[i, j] == np.max([img1[i, j], img1[i + 1, j], img1[i - 1, j]])):img2[i, j] = img1[i, j]if (theta[i, j] == -45.0) and img1[i, j] == np.max([img1[i, j], img1[i - 1, j - 1], img1[i + 1, j + 1]]):img2[i, j] = img1[i, j]if (theta[i, j] == 90.0) and img1[i, j] == np.max([img1[i, j], img1[i, j + 1], img1[i, j - 1]]):img2[i, j] = img1[i, j]if (theta[i, j] == 45.0) and img1[i, j] == np.max([img1[i, j], img1[i - 1, j + 1], img1[i + 1, j - 1]]):img2[i, j] = img1[i, j]# 第四步:雙閾值檢測和邊緣連接img3 = np.zeros(img2.shape) # 定義雙閾值圖像# TL = 0.4*np.max(img2)# TH = 0.5*np.max(img2)TL = 50TH = 100# 關鍵在這兩個閾值的選擇for i in range(1, img3.shape[0] - 1):for j in range(1, img3.shape[1] - 1):if img2[i, j] < TL:img3[i, j] = 0elif img2[i, j] > TH:img3[i, j] = 255elif ((img2[i + 1, j] < TH) or (img2[i - 1, j] < TH) or (img2[i, j + 1] < TH) or(img2[i, j - 1] < TH) or (img2[i - 1, j - 1] < TH) or (img2[i - 1, j + 1] < TH) or(img2[i + 1, j + 1] < TH) or (img2[i + 1, j - 1] < TH)):img3[i, j] = 255cv2.namedWindow(’1’, 0)cv2.resizeWindow('1', 640, 480)cv2.namedWindow(’2’, 0)cv2.resizeWindow('2', 640, 480)cv2.namedWindow(’3’, 0)cv2.resizeWindow('3', 640, 480)cv2.namedWindow(’4’, 0)cv2.resizeWindow('4', 640, 480)cv2.imshow('1', img) # 原始圖像cv2.imshow('2', img1) # 梯度幅值圖cv2.imshow('3', img2) # 非極大值抑制灰度圖cv2.imshow('4', img3) # 最終效果圖cv2.waitKey(0)

運行結果如下

python實現canny邊緣檢測

python實現canny邊緣檢測

以上就是python實現canny邊緣檢測的詳細內容,更多關于canny邊緣檢測的資料請關注好吧啦網其它相關文章!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 光谱仪_积分球_分布光度计_灯具检测生产厂家_杭州松朗光电【官网】 | 水冷式工业冷水机组_风冷式工业冷水机_水冷螺杆冷冻机组-深圳市普威机械设备有限公司 | 球磨机,节能球磨机价格,水泥球磨机厂家,粉煤灰球磨机-吉宏机械制造有限公司 | 煤机配件厂家_刮板机配件_链轮轴组_河南双志机械设备有限公司 | 土壤水分自动监测站-SM150便携式土壤水分仪-铭奥仪器 | TwistDx恒温扩增-RAA等温-Jackson抗体-默瑞(上海)生物科技有限公司 | 塑料异型材_PVC异型材_封边条生产厂家_PC灯罩_防撞扶手_医院扶手价格_东莞市怡美塑胶制品有限公司 | 皮带机-带式输送机价格-固定式胶带机生产厂家-河南坤威机械 | PE拉伸缠绕膜,拉伸缠绕膜厂家,纳米缠绕膜-山东凯祥包装 | 电镀电源整流器_高频电解电源_单脉双脉冲电源 - 东阳市旭东电子科技 | 安规_综合测试仪,电器安全性能综合测试仪,低压母线槽安规综合测试仪-青岛合众电子有限公司 | crm客户关系管理系统,销售管理系统,crm系统,在线crm,移动crm系统 - 爱客crm | 防水套管厂家-柔性防水套管-不锈钢|刚性防水套管-天翔管道 | 报警器_家用防盗报警器_烟雾报警器_燃气报警器_防盗报警系统厂家-深圳市刻锐智能科技有限公司 | 渣油泵,KCB齿轮泵,不锈钢齿轮泵,重油泵,煤焦油泵,泊头市泰邦泵阀制造有限公司 | 武汉高低温试验机-现货恒温恒湿试验箱-高低温湿热交变箱价格-湖北高天试验设备 | 金蝶帐无忧|云代账软件|智能财税软件|会计代账公司专用软件 | 哔咔漫画网页版在线_下载入口访问指引| 广州展览设计公司_展台设计搭建_展位设计装修公司-众派展览装饰 广州展览制作工厂—[优简]直营展台制作工厂_展会搭建资质齐全 | 线材成型机,线材折弯机,线材成型机厂家,贝朗自动化设备有限公司1 | 欧洲MV日韩MV国产_人妻无码一区二区三区免费_少妇被 到高潮喷出白浆av_精品少妇自慰到喷水AV网站 | 二手色谱仪器,十万分之一分析天平,蒸发光检测器,电位滴定仪-湖北捷岛科学仪器有限公司 | 课件导航网_ppt课件_课件模板_课件下载_最新课件资源分享发布平台 | 生鲜配送系统-蔬菜食材配送管理系统-连锁餐饮订货配送软件-挪挪生鲜供应链管理软件 | 金刚网,金刚网窗纱,不锈钢网,金刚网厂家- 河北萨邦丝网制品有限公司 | 冷油器,取样冷却器,热力除氧器-连云港振辉机械设备有限公司 | 日本细胞免疫疗法_肿瘤免疫治疗_NK细胞疗法 - 免疫密码 | 户外健身路径_小区健身器材_室外健身器材厂家_价格-浩然体育 | 彩信群发_群发彩信软件_视频短信营销平台-达信通 | 湖北省煤炭供应链综合服务平台| 新疆乌鲁木齐网站建设-乌鲁木齐网站制作设计-新疆远璨网络 | 华禹护栏|锌钢护栏_阳台护栏_护栏厂家-华禹专注阳台护栏、楼梯栏杆、百叶窗、空调架、基坑护栏、道路护栏等锌钢护栏产品的生产销售。 | 棉柔巾代加工_洗脸巾oem_一次性毛巾_浴巾生产厂家-杭州禾壹卫品科技有限公司 | 智能气瓶柜(大型气瓶储存柜)百科 | 贴片电容-贴片电阻-二三极管-国巨|三星|风华贴片电容代理商-深圳伟哲电子 | 圆盘鞋底注塑机_连帮鞋底成型注塑机-温州天钢机械有限公司 | 防爆暖风机_防爆电暖器_防爆电暖风机_防爆电热油汀_南阳市中通智能科技集团有限公司 | 合同书格式和范文_合同书样本模板_电子版合同,找范文吧 | 安徽控制器-合肥船用空调控制器-合肥家电控制器-合肥迅驰电子厂 安徽净化板_合肥岩棉板厂家_玻镁板厂家_安徽科艺美洁净科技有限公司 | 螺杆泵_中成泵业 | 包装设计公司,产品包装设计|包装制作,包装盒定制厂家-汇包装【官方网站】 |