电脑知识|欧美黑人一区二区三区|软件|欧美黑人一级爽快片淫片高清|系统|欧美黑人狂野猛交老妇|数据库|服务器|编程开发|网络运营|知识问答|技术教程文章 - 好吧啦网

您的位置:首頁技術文章
文章詳情頁

python 生成正態分布數據,并繪圖和解析

瀏覽:81日期:2022-07-01 15:22:04
1、生成正態分布數據并繪制概率分布圖

import pandas as pdimport numpy as npimport matplotlib.pyplot as plt# 根據均值、標準差,求指定范圍的正態分布概率值def normfun(x, mu, sigma): pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi)) return pdf# result = np.random.randint(-65, 80, size=100) # 最小值,最大值,數量result = np.random.normal(15, 44, 100) # 均值為0.5,方差為1print(result)x = np.arange(min(result), max(result), 0.1)# 設定 y 軸,載入剛才的正態分布函數print(result.mean(), result.std())y = normfun(x, result.mean(), result.std())plt.plot(x, y) # 這里畫出理論的正態分布概率曲線# 這里畫出實際的參數概率與取值關系plt.hist(result, bins=10, rwidth=0.8, density=True) # bins個柱狀圖,寬度是rwidth(0~1),=1沒有縫隙plt.title(’distribution’)plt.xlabel(’temperature’)plt.ylabel(’probability’)# 輸出plt.show() # 最后圖片的概率和不為1是因為正態分布是從負無窮到正無窮,這里指截取了數據最小值到最大值的分布

python 生成正態分布數據,并繪圖和解析

根據范圍生成正態分布:

result = np.random.randint(-65, 80, size=100) # 最小值,最大值,數量

根據均值、方差生成正態分布:

result = np.random.normal(15, 44, 100) # 均值為0.5,方差為12、判斷一個序列是否符合正態分布

import numpy as npfrom scipy import statspts = 1000np.random.seed(28041990)a = np.random.normal(0, 1, size=pts) # 生成1個正態分布,均值為0,標準差為1,100個點b = np.random.normal(2, 1, size=pts) # 生成1個正態分布,均值為2,標準差為1, 100個點x = np.concatenate((a, b)) # 把兩個正態分布連接起來,所以理論上變成了非正態分布序列k2, p = stats.normaltest(x)alpha = 1e-3print('p = {:g}'.format(p))# 原假設:x是一個正態分布if p < alpha: # null hypothesis: x comes from a normal distribution print('The null hypothesis can be rejected') # 原假設可被拒絕,即不是正態分布else: print('The null hypothesis cannot be rejected') # 原假設不可被拒絕,即使正態分布3、求置信區間、異常值

import numpy as npimport matplotlib.pyplot as pltfrom scipy import statsimport pandas as pd# 求列表數據的異常點def get_outer_data(data_list): df = pd.DataFrame(data_list, columns=[’value’]) df = df.iloc[:, 0] # 計算下四分位數和上四分位 Q1 = df.quantile(q=0.25) Q3 = df.quantile(q=0.75) # 基于1.5倍的四分位差計算上下須對應的值 low_whisker = Q1 - 1.5 * (Q3 - Q1) up_whisker = Q3 + 1.5 * (Q3 - Q1) # 尋找異常點 kk = df[(df > up_whisker) | (df < low_whisker)] data1 = pd.DataFrame({’id’: kk.index, ’異常值’: kk}) return data1N = 100result = np.random.normal(0, 1, N)# result = np.random.randint(-65, 80, size=N) # 最小值,最大值,數量mean, std = result.mean(), result.std(ddof=1) # 求均值和標準差# 計算置信區間,這里的0.9是置信水平conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std) # 90%概率print(’置信區間:’, conf_intveral)x = np.arange(0, len(result), 1)# 求異常值outer = get_outer_data(result)print(outer, type(outer))x1 = outer.iloc[:, 0]y1 = outer.iloc[:, 1]plt.scatter(x1, y1, marker=’x’, color=’r’) # 所有離散點plt.scatter(x, result, marker=’.’, color=’g’) # 異常點plt.plot([0, len(result)], [conf_intveral[0], conf_intveral[0]])plt.plot([0, len(result)], [conf_intveral[1], conf_intveral[1]])plt.show()

python 生成正態分布數據,并繪圖和解析

4、采樣點離散圖和概率圖

import numpy as npimport matplotlib.pyplot as pltfrom scipy import statsimport pandas as pdimport timeprint(time.strftime(’%Y-%m-%D %H:%M:%S’))# 根據均值、標準差,求指定范圍的正態分布概率值def _normfun(x, mu, sigma): pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi)) return pdf# 求列表數據的異常點def get_outer_data(data_list): df = pd.DataFrame(data_list, columns=[’value’]) df = df.iloc[:, 0] # 計算下四分位數和上四分位 Q1 = df.quantile(q=0.25) Q3 = df.quantile(q=0.75) # 基于1.5倍的四分位差計算上下須對應的值 low_whisker = Q1 - 1.5 * (Q3 - Q1) up_whisker = Q3 + 1.5 * (Q3 - Q1) # 尋找異常點 kk = df[(df > up_whisker) | (df < low_whisker)] data1 = pd.DataFrame({’id’: kk.index, ’異常值’: kk}) return data1N = 100result = np.random.normal(0, 1, N)# result = np.random.randint(-65, 80, size=N) # 最小值,最大值,數量# result = [100]*100 # 取值全相同# result = np.array(result)mean, std = result.mean(), result.std(ddof=1) # 求均值和標準差# 計算置信區間,這里的0.9是置信水平if std == 0: # 如果所有值都相同即標準差為0則無法計算置信區間 conf_intveral = [min(result)-1, max(result)+1]else: conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std) # 90%概率# print(’置信區間:’, conf_intveral)# 求異常值outer = get_outer_data(result)# 繪制離散圖fig = plt.figure()fig.add_subplot(2, 1, 1)plt.subplots_adjust(hspace=0.3)x = np.arange(0, len(result), 1)plt.scatter(x, result, marker=’.’, color=’g’) # 畫所有離散點plt.scatter(outer.iloc[:, 0], outer.iloc[:, 1], marker=’x’, color=’r’) # 畫異常離散點plt.plot([0, len(result)], [conf_intveral[0], conf_intveral[0]]) # 置信區間線條plt.plot([0, len(result)], [conf_intveral[1], conf_intveral[1]]) # 置信區間線條plt.text(0, conf_intveral[0], ’{:.2f}’.format(conf_intveral[0])) # 置信區間數字顯示plt.text(0, conf_intveral[1], ’{:.2f}’.format(conf_intveral[1])) # 置信區間數字顯示info = ’outer count:{}’.format(len(outer.iloc[:, 0]))plt.text(min(x), max(result)-((max(result)-min(result)) / 2), info) # 異常點數顯示plt.xlabel(’sample count’)plt.ylabel(’value’)# 繪制概率圖if std != 0: # 如果所有取值都相同 fig.add_subplot(2, 1, 2) x = np.arange(min(result), max(result), 0.1) y = _normfun(x, result.mean(), result.std()) plt.plot(x, y) # 這里畫出理論的正態分布概率曲線 plt.hist(result, bins=10, rwidth=0.8, density=True) # bins個柱狀圖,寬度是rwidth(0~1),=1沒有縫隙 info = ’mean:{:.2f}nstd:{:.2f}nmode num:{:.2f}’.format(mean, std, np.median(result)) plt.text(min(x), max(y) / 2, info) plt.xlabel(’value’) plt.ylabel(’Probability’)else: fig.add_subplot(2, 1, 2) info = ’non-normal distribution!!nmean:{:.2f}nstd:{:.2f}nmode num:{:.2f}’.format(mean, std, np.median(result)) plt.text(0.5, 0.5, info) plt.xlabel(’value’) plt.ylabel(’Probability’)plt.savefig(’./distribution.jpg’)plt.show()print(time.strftime(’%Y-%m-%D %H:%M:%S’))

python 生成正態分布數據,并繪圖和解析

以上就是python 生成正態分布數據,并繪圖和解析的詳細內容,更多關于python 正態分布的資料請關注好吧啦網其它相關文章!

標簽: Python 編程
主站蜘蛛池模板: 消电检公司,消电检价格,北京消电检报告-北京设施检测公司-亿杰(北京)消防工程有限公司 | 紫外可见光分光度计-紫外分光度计-分光光度仪-屹谱仪器制造(上海)有限公司 | 聚合氯化铝-碱式氯化铝-聚合硫酸铁-聚氯化铝铁生产厂家多少钱一吨-聚丙烯酰胺价格_河南浩博净水材料有限公司 | 考勤系统_考勤管理系统_网络考勤软件_政企|集团|工厂复杂考勤工时统计排班管理系统_天时考勤 | 废气处理设备-工业除尘器-RTO-RCO-蓄热式焚烧炉厂家-江苏天达环保设备有限公司 | 无线联网门锁|校园联网门锁|学校智能门锁|公租房智能门锁|保障房管理系统-KEENZY中科易安 | 广州企亚 - 数码直喷、白墨印花、源头厂家、透气无手感方案服务商! | 智能化的检漏仪_气密性测试仪_流量测试仪_流阻阻力测试仪_呼吸管快速检漏仪_连接器防水测试仪_车载镜头测试仪_奥图自动化科技 | 闪蒸干燥机-喷雾干燥机-带式干燥机-桨叶干燥机-[常州佳一干燥设备] | 碳化硅,氮化硅,冰晶石,绢云母,氟化铝,白刚玉,棕刚玉,石墨,铝粉,铁粉,金属硅粉,金属铝粉,氧化铝粉,硅微粉,蓝晶石,红柱石,莫来石,粉煤灰,三聚磷酸钠,六偏磷酸钠,硫酸镁-皓泉新材料 | 高效节能电机_伺服主轴电机_铜转子电机_交流感应伺服电机_图片_型号_江苏智马科技有限公司 | HV全空气系统_杭州暖通公司—杭州斯培尔冷暖设备有限公司 | 汽车水泵_汽车水泵厂家-瑞安市骏迪汽车配件有限公司 | 福州仿石漆加盟_福建仿石漆厂家-外墙仿石漆加盟推荐铁壁金钢(福建)新材料科技有限公司有保障 | 定做大型恒温循环水浴槽-工业用不锈钢恒温水箱-大容量低温恒温水槽-常州精达仪器 | 房车价格_依维柯/大通/东风御风/福特全顺/江铃图片_云梯搬家车厂家-程力专用汽车股份有限公司 | 企典软件一站式企业管理平台,可私有、本地化部署!在线CRM客户关系管理系统|移动办公OA管理系统|HR人事管理系统|人力 | 微动开关厂家-东莞市德沃电子科技有限公司 | 河南mpp电力管_mpp电力管生产厂家_mpp电力电缆保护管价格 - 河南晨翀实业 | 长沙印刷厂-包装印刷-画册印刷厂家-湖南省日大彩色印务有限公司 青州搬家公司电话_青州搬家公司哪家好「鸿喜」青州搬家 | 海德莱电力(HYDELEY)-无功补偿元器件生产厂家-二十年专业从事电力电容器 | NM-02立式吸污机_ZHCS-02软轴刷_二合一吸刷软轴刷-厦门地坤科技有限公司 | 环球周刊网| 清管器,管道清管器,聚氨酯发泡球,清管球 - 承德嘉拓设备 | 工控机-工业平板电脑-研华工控机-研越无风扇嵌入式box工控机 | 空气弹簧|橡胶气囊|橡胶空气弹簧-上海松夏减震器有限公司 | 天津试验仪器-电液伺服万能材料试验机,恒温恒湿标准养护箱,水泥恒应力压力试验机-天津鑫高伟业科技有限公司 | 防爆暖风机_防爆电暖器_防爆电暖风机_防爆电热油汀_南阳市中通智能科技集团有限公司 | 防水套管厂家-柔性防水套管-不锈钢|刚性防水套管-天翔管道 | 计算机毕业设计源码网| 大行程影像测量仪-探针型影像测量仪-增强型影像测量仪|首丰百科 大通天成企业资质代办_承装修试电力设施许可证_增值电信业务经营许可证_无人机运营合格证_广播电视节目制作许可证 | 四合院设计_四合院装修_四合院会所设计-四合院古建设计与建造中心1 | 济南保安公司加盟挂靠-亮剑国际安保服务集团总部-山东保安公司|济南保安培训学校 | 发电机组|柴油发电机组-批发,上柴,玉柴,潍柴,康明斯柴油发电机厂家直销 | 釜溪印象网络 - Powered by Discuz! | 杭州代理记账多少钱-注册公司代办-公司注销流程及费用-杭州福道财务管理咨询有限公司 | 科昊仪器超纯水机系统-可成气相液氮罐-美菱超低温冰箱-西安昊兴生物科技有限公司 | 咖啡加盟-咖啡店加盟-咖啡西餐厅加盟-塞纳左岸咖啡西餐厅官网 | 组织研磨机-高通量组织研磨仪-实验室多样品组织研磨机-东方天净 传递窗_超净|洁净工作台_高效过滤器-传递窗厂家广州梓净公司 | 自动部分收集器,进口无油隔膜真空泵,SPME固相微萃取头-上海楚定分析仪器有限公司 | 球磨机 选矿球磨机 棒磨机 浮选机 分级机 选矿设备厂家 |