电脑知识|欧美黑人一区二区三区|软件|欧美黑人一级爽快片淫片高清|系统|欧美黑人狂野猛交老妇|数据库|服务器|编程开发|网络运营|知识问答|技术教程文章 - 好吧啦网

您的位置:首頁技術文章
文章詳情頁

python如何正確使用yield

瀏覽:3日期:2022-06-18 17:23:35
目錄生成器nextsendthrowclose使用場景大集合的生成簡化代碼結構協程與并發總結生成器

如果在一個方法內,包含了 yield 關鍵字,那么這個函數就是一個「生成器」。

生成器其實就是一個特殊的迭代器,它可以像迭代器那樣,迭代輸出方法內的每個元素。

我們來看一個包含 yield 關鍵字的方法:

# coding: utf8# 生成器def gen(n): for i in range(n):yield ig = gen(5) # 創建一個生成器print(g)# <generator object gen at 0x10bb46f50>print(type(g)) # <type ’generator’># 迭代生成器中的數據for i in g: print(i) # Output:# 0 1 2 3 4

注意,在這個例子中,當我們執行 g = gen(5) 時,gen 中的代碼其實并沒有執行,此時我們只是創建了一個「生成器對象」,它的類型是 generator。

然后,當我們執行 for i in g,每執行一次循環,就會執行到 yield 處,返回一次 yield 后面的值。

這個迭代過程是和迭代器最大的區別。

換句話說,如果我們想輸出 5 個元素,在創建生成器時,這個 5 個元素其實還并沒有產生,什么時候產生呢?只有在執行 for 循環遇到 yield 時,才會依次生成每個元素。

此外,生成器除了和迭代器一樣實現迭代數據之外,還包含了其他方法:

generator.__next__():執行 for 時調用此方法,每次執行到 yield 就會停止,然后返回 yield 后面的值,如果沒有數據可迭代,拋出 StopIterator 異常,for 循環結束 generator.send(value):外部傳入一個值到生成器內部,改變 yield 前面的值 generator.throw(type[, value[, traceback]]):外部向生成器拋出一個異常 generator.close():關閉生成器

通過使用生成器的這些方法,我們可以完成很多有意思的功能。

next

先來看生成器的 __next__ 方法,我們看下面這個例子。

# coding: utf8def gen(n): for i in range(n):print(’yield before’)yield iprint(’yield after’)g = gen(3) # 創建一個生成器print(g.__next__()) # 0print(’----’)print(g.__next__()) # 1print(’----’)print(g.__next__()) # 2print(’----’)print(g.__next__()) # StopIteration# Output:# yield before# 0# ----# yield after# yield before# 1# ----# yield after# yield before# 2# ----# yield after# Traceback (most recent call last):# File 'gen.py', line 16, in <module># print(g.__next__()) # StopIteration# StopIteration

在這個例子中,我們定義了 gen 方法,這個方法包含了 yield 關鍵字。然后我們執行 g = gen(3) 創建一個生成器,但是這次沒有執行 for 去迭代它,而是多次調用 g.__next__() 去輸出生成器中的元素。

我們看到,當執行 g.__next__()時,代碼就會執行到 yield 處,然后返回 yield 后面的值,如果繼續調用 g.__next__(),注意,你會發現,這次執行的開始位置,是上次 yield 結束的地方,并且它還保留了上一次執行的上下文,繼續向后迭代。

這就是使用 yield 的作用,在迭代生成器時,每一次執行都可以保留上一次的狀態,而不是像普通方法那樣,遇到 return 就返回結果,下一次執行只能再次重復上一次的流程。

生成器除了能保存狀態之外,我們還可以通過其他方式,改變其內部的狀態,這就是下面要講的 send 和 throw 方法。

send

上面的例子中,我們只展示了在 yield 后有值的情況,其實還可以使用 j = yield i 這種語法,我們看下面的代碼:

# coding: utf8def gen(): i = 1 while True:j = yield ii *= 2if j == -1: break

此時如果我們執行下面的代碼:

for i in gen(): print(i) time.sleep(1)

輸出結果會是 1 2 4 8 16 32 64 ... 一直循環下去, 直到我們殺死這個進程才能停止。

這段代碼一直循環的原因在于,它無法執行到 j == -1 這個分支里 break 出來,如果我們想讓代碼執行到這個地方,如何做呢?

這里就要用到生成器的 send 方法了,send 方法可以把外部的值傳入生成器內部,從而改變生成器的狀態。

代碼可以像下面這樣寫:

g = gen() # 創建一個生成器print(g.__next__()) # 1print(g.__next__()) # 2print(g.__next__()) # 4# send 把 -1 傳入生成器內部 走到了 j = -1 這個分支print(g.send(-1)) # StopIteration 迭代停止

當我們執行 g.send(-1) 時,相當于把 -1 傳入到了生成器內部,然后賦值給了 yield 前面的 j,此時 j = -1,然后這個方法就會 break 出來,不會繼續迭代下去。

throw

外部除了可以向生成器內部傳入一個值外,還可以傳入一個異常,也就是調用 throw 方法:

# coding: utf8def gen(): try:yield 1 except ValueError:yield ’ValueError’ finally:print(’finally’)g = gen() # 創建一個生成器print(g.__next__()) # 1# 向生成器內部傳入異常 返回ValueErrorprint(g.throw(ValueError))# Output:# 1# ValueError# finally

這個例子創建好生成器后,使用 g.throw(ValueError) 的方式,向生成器內部傳入了一個異常,走到了生成器異常處理的分支邏輯。

close

生成器的 close 方法也比較簡單,就是手動關閉這個生成器,關閉后的生成器無法再進行操作。

>>> g = gen()>>> g.close() # 關閉生成器>>> g.__next__() # 無法迭代數據Traceback (most recent call last): File '<stdin>', line 1, in <module>StopIteration使用場景

了解了 yield 和生成器的使用方式,那么 yield 和生成器一般用在哪些業務場景中呢?

下面我介紹幾個例子,分別是大集合的生成、簡化代碼結構、協程與并發,你可以參考這些使用場景來使用 yield。

大集合的生成

如果你想生成一個非常大的集合,如果使用 list 創建一個集合,這會導致在內存中申請一個很大的存儲空間,例如想下面這樣:

# coding: utf8def big_list(): result = [] for i in range(10000000000):result.append(i) return result# 一次性在內存中生成大集合 內存占用非常大for i in big_list(): print(i)

這種場景,我們使用生成器就能很好地解決這個問題。

因為生成器只有在執行到 yield 時才會迭代數據,這時只會申請需要返回元素的內存空間,代碼可以這樣寫:

# coding: utf8def big_list(): for i in range(10000000000):yield i# 只有在迭代時 才依次生成元素 減少內存占用for i in big_list(): print(i)簡化代碼結構

我們在開發時還經常遇到這樣一種場景,如果一個方法要返回一個 list,但這個 list 是多個邏輯塊組合后才能產生的,這就會導致我們的代碼結構變得很復雜:

# coding: utf8def gen_list(): # 多個邏輯塊 組成生成一個列表 result = [] for i in range(10):result.append(i) for j in range(5):result.append(j * j) for k in [100, 200, 300]:result.append(k) return result for item in gen_list(): print(item)

這種情況下,我們只能在每個邏輯塊內使用 append 向 list 中追加元素,代碼寫起來比較??隆?/p>

此時如果使用 yield 來生成這個 list,代碼就簡潔很多:

# coding: utf8def gen_list(): # 多個邏輯塊 使用yield 生成一個列表 for i in range(10):yield i for j in range(5):yield j * j for k in [100, 200, 300]:yield kfor item in gen_list(): print(i)

使用 yield 后,就不再需要定義 list 類型的變量,只需在每個邏輯塊直接 yield 返回元素即可,可以達到和前面例子一樣的功能。

我們看到,使用 yield 的代碼更加簡潔,結構也更清晰,另外的好處是只有在迭代元素時才申請內存空間,降低了內存資源的消耗。

協程與并發

還有一種場景是 yield 使用非常多的,那就是「協程與并發」。

如果我們想提高程序的執行效率,通常會使用多進程、多線程的方式編寫程序代碼,最常用的編程模型就是「生產者-消費者」模型,即一個進程 / 線程生產數據,其他進程 / 線程消費數據。

在開發多進程、多線程程序時,為了防止共享資源被篡改,我們通常還需要加鎖進行保護,這樣就增加了編程的復雜度。

在 Python 中,除了使用進程和線程之外,我們還可以使用「協程」來提高代碼的運行效率。

什么是協程?

簡單來說,由多個程序塊組合協作執行的程序,稱之為「協程」。

而在 Python 中使用「協程」,就需要用到 yield 關鍵字來配合。

可能這么說還是太好理解,我們用 yield 實現一個協程生產者、消費者的例子:

# coding: utf8def consumer(): i = None while True:# 拿到 producer 發來的數據j = yield i print(’consume %s’ % j)def producer(c): c.__next__() for i in range(5):print(’produce %s’ % i)# 發數據給 consumerc.send(i) c.close()c = consumer()producer(c)# Output:# produce 0# consume 0# produce 1# consume 1# produce 2# consume 2# produce 3# consume 3...

這個程序的執行流程如下:

c = consumer() 創建一個生成器對象 producer(c) 開始執行,c.__next()__ 會啟動生成器 consumer 直到代碼運行到 j = yield i 處,此時 consumer 第一次執行完畢,返回 producer 函數繼續向下執行,直到 c.send(i) 處,這里利用生成器的 send 方法,向 consumer 發送數據 consumer 函數被喚醒,從 j = yield i 處繼續開始執行,并且接收到 producer 傳來的數據賦值給 j,然后打印輸出,直到再次執行到 yield 處,返回 producer 繼續循環執行上面的過程,依次發送數據給 cosnumer,直到循環結束 最終 c.close() 關閉 consumer 生成器,程序退出

在這個例子中我們發現,程序在 producer 和 consumer 這 2 個函數之間來回切換執行,相互協作,完成了生產任務、消費任務的業務場景,最重要的是,整個程序是在單進程單線程下完成的。

這個例子用到了上面講到的 yield、生成器的 __next__、send、close 方法。如果不好理解,你可以多看幾遍這個例子,最好自己測試一下。

我們使用協程編寫生產者、消費者的程序時,它的好處是:

整個程序運行過程中無鎖,不用考慮共享變量的保護問題,降低了編程復雜度程序在函數之間來回切換,這個過程是用戶態下進行的,不像進程 / 線程那樣,會陷入到內核態,這就減少了內核態上下文切換的消耗,執行效率更高所以,Python 的 yield 和生成器實現了協程的編程方式,為程序的并發執行提供了編程基礎。

Python 中的很多第三方庫,都是基于這一特性進行封裝的,例如 gevent、tornado,它們都大大提高了程序的運行效率。

總結

總結一下,這篇文章我們主要講了 yield 的使用方式,以及生成器的各種特性。

生成器是一種特殊的迭代器,它除了可以迭代數據之外,在執行時還可以保存方法中的狀態,除此之外,它還提供了外部改變內部狀態的方式,把外部的值傳入到生成器內部。

利用 yield 和生成器的特性,我們在開發中可以用在大集成的生成、簡化代碼結構、協程與并發的業務場景中。

Python 的 yield 也是實現協程和并發的基礎,它提供了協程這種用戶態的編程模式,提高了程序運行的效率。

以上就是python如何正確使用yield的詳細內容,更多關于python 使用yield的資料請關注好吧啦網其它相關文章!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 防火板_饰面耐火板价格、厂家_品牌认准格林雅 | 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 万烁建筑设计院-建筑设计公司加盟,设计院加盟分公司,市政设计加盟 | 2-羟基泽兰内酯-乙酰蒲公英萜醇-甘草查尔酮A-上海纯优生物科技有限公司 | 耐磨焊丝,堆焊焊丝,耐磨药芯焊丝,碳化钨焊丝-北京耐默公司 | 膏剂灌装旋盖机-眼药水灌装生产线-西林瓶粉剂分装机-南通博琅机械科技 | 利浦顿蒸汽发生器厂家-电蒸汽发生器/燃气蒸汽发生器_湖北利浦顿热能科技有限公司官网 | 河南不锈钢水箱_地埋水箱_镀锌板水箱_消防水箱厂家-河南联固供水设备有限公司 | 托盘租赁_塑料托盘租赁_托盘出租_栈板出租_青岛托盘租赁-优胜必达 | 【德信自动化】点胶机_全自动点胶机_自动点胶机厂家_塑料热压机_自动螺丝机-深圳市德信自动化设备有限公司 | 高低温万能试验机-复合材料万能试验机-馥勒仪器 | 臭氧发生器_臭氧消毒机 - 【同林品牌 实力厂家】 | 重庆中专|职高|技校招生-重庆中专招生网 | 江门流水线|江门工作台|江门市伟涛行工业设备有限公司 | 一体化污水处理设备_生活污水处理设备_全自动加药装置厂家-明基环保 | 密度电子天平-内校-外校电子天平-沈阳龙腾电子有限公司 | 手机游戏_热门软件app下载_好玩的安卓游戏下载基地-吾爱下载站 | 青岛空压机,青岛空压机维修/保养,青岛空压机销售/出租公司,青岛空压机厂家电话 | 洛阳防爆合格证办理-洛阳防爆认证机构-洛阳申请国家防爆合格证-洛阳本安防爆认证代办-洛阳沪南抚防爆电气技术服务有限公司 | 山东led显示屏,山东led全彩显示屏,山东LED小间距屏,临沂全彩电子屏-山东亚泰视讯传媒有限公司 | 水厂自动化-水厂控制系统-泵站自动化|控制系统-闸门自动化控制-济南华通中控科技有限公司 | 商用绞肉机-熟肉切片机-冻肉切丁机-猪肉开条机 - 广州市正盈机械设备有限公司 | PVC地板|PVC塑胶地板|PVC地板厂家|地板胶|防静电地板-无锡腾方装饰材料有限公司-咨询热线:4008-798-128 | C形臂_动态平板DR_动态平板胃肠机生产厂家制造商-普爱医疗 | 防爆正压柜厂家_防爆配电箱_防爆控制箱_防爆空调_-盛通防爆 | 常州减速机_减速机厂家_常州市减速机厂有限公司 | 东莞螺杆空压机_永磁变频空压机_节能空压机_空压机工厂批发_深圳螺杆空压机_广州螺杆空压机_东莞空压机_空压机批发_东莞空压机工厂批发_东莞市文颖设备科技有限公司 | 混合气体腐蚀试验箱_盐雾/硫化氢/气体腐蚀试验箱厂家-北京中科博达 | 视频直播 -摄影摄像-视频拍摄-直播分发 | 贵州科比特-防雷公司厂家提供贵州防雷工程,防雷检测,防雷接地,防雷设备价格,防雷产品报价服务-贵州防雷检测公司 | 代理记账_公司起名核名_公司注册_工商注册-睿婕实业有限公司 | 纯水设备_苏州皙全超纯水设备水处理设备生产厂家 | 哈希PC1R1A,哈希CA9300,哈希SC4500-上海鑫嵩实业有限公司 | 样品瓶(色谱样品瓶)百科-浙江哈迈科技有限公司 | 无菌水质袋-NASCO食品无菌袋-Whirl-Pak无菌采样袋-深圳市慧普德贸易有限公司 | 附着力促进剂-尼龙处理剂-PP处理剂-金属附着力处理剂-东莞市炅盛塑胶科技有限公司 | 洗砂机械-球磨制砂机-洗沙制砂机械设备_青州冠诚重工机械有限公司 | 天津中都白癜风医院_天津白癜风医院_天津治疗白癜风 | 焊锡丝|焊锡条|无铅锡条|无铅锡丝|无铅焊锡线|低温锡膏-深圳市川崎锡业科技有限公司 | 拖链电缆_柔性电缆_伺服电缆_坦克链电缆-深圳市顺电工业电缆有限公司 | 【化妆品备案】进口化妆品备案流程-深圳美尚美化妆品有限公司 |