电脑知识|欧美黑人一区二区三区|软件|欧美黑人一级爽快片淫片高清|系统|欧美黑人狂野猛交老妇|数据库|服务器|编程开发|网络运营|知识问答|技术教程文章 - 好吧啦网

您的位置:首頁技術(shù)文章
文章詳情頁

Python Pandas的簡單使用教程

瀏覽:90日期:2022-07-28 18:54:12
一、Pandas簡介

1、Python Data Analysis Library 或 pandas 是基于NumPy 的一種工具,該工具是為了解決數(shù)據(jù)分析任務(wù)而創(chuàng)建的。Pandas 納入了大量庫和一些標(biāo)準(zhǔn)的數(shù)據(jù)模型,提供了高效地操作大型數(shù)據(jù)集所需的工具。pandas提供了大量能使我們快速便捷地處理數(shù)據(jù)的函數(shù)和方法。你很快就會(huì)發(fā)現(xiàn),它是使Python成為強(qiáng)大而高效的數(shù)據(jù)分析環(huán)境的重要因素之一。

2、Pandas 是python的一個(gè)數(shù)據(jù)分析包,最初由AQR Capital Management于2008年4月開發(fā),并于2009年底開源出來,目前由專注于Python數(shù)據(jù)包開發(fā)的PyData開發(fā)team繼續(xù)開發(fā)和維護(hù),屬于PyData項(xiàng)目的一部分。Pandas最初被作為金融數(shù)據(jù)分析工具而開發(fā)出來,因此,pandas為時(shí)間序列分析提供了很好的支持。 Pandas的名稱來自于面板數(shù)據(jù)(panel data)和python數(shù)據(jù)分析(data analysis)。panel data是經(jīng)濟(jì)學(xué)中關(guān)于多維數(shù)據(jù)集的一個(gè)術(shù)語,在Pandas中也提供了panel的數(shù)據(jù)類型。

3、數(shù)據(jù)結(jié)構(gòu):

Series:一維數(shù)組,與Numpy中的一維array類似。二者與Python基本的數(shù)據(jù)結(jié)構(gòu)List也很相近,其區(qū)別是:List中的元素可以是不同的數(shù)據(jù)類型,而Array和Series中則只允許存儲(chǔ)相同的數(shù)據(jù)類型,這樣可以更有效的使用內(nèi)存,提高運(yùn)算效率。

Time- Series:以時(shí)間為索引的Series。

DataFrame:二維的表格型數(shù)據(jù)結(jié)構(gòu)。很多功能與R中的data.frame類似。可以將DataFrame理解為Series的容器。以下的內(nèi)容主要以DataFrame為主。

Panel :三維的數(shù)組,可以理解為DataFrame的容器。

Pandas 有兩種自己獨(dú)有的基本數(shù)據(jù)結(jié)構(gòu)。讀者應(yīng)該注意的是,它固然有著兩種數(shù)據(jù)結(jié)構(gòu),因?yàn)樗廊皇?Python 的一個(gè)庫,所以,Python 中有的數(shù)據(jù)類型在這里依然適用,也同樣還可以使用類自己定義數(shù)據(jù)類型。只不過,Pandas 里面又定義了兩種數(shù)據(jù)類型:Series 和 DataFrame,它們讓數(shù)據(jù)操作更簡單了。

二、Python Pandas的使用

修改列數(shù)據(jù):

df[’price’]=df[’price’].str.replace(’人均’,’’) # 刪除多余文字df[’price’]=df[’price’].str.split('¥').str[-1] # 分割文本串df[’price’]=df[’price’].str.replace(’-’,’0’) # 替換文本df[’price’]=df[’price’].astype(int) # 文本轉(zhuǎn)整型

把pandas轉(zhuǎn)換int型為str型的方法

切分列數(shù)據(jù):

df[’kw’]=df[’commentlist’].str.split().str[0].str.replace('口味',’’)df[’hj’]=df[’commentlist’].str.split().str[1].str.replace('環(huán)境',’’)df[’fw’]=df[’commentlist’].str.split().str[2].str.replace('服務(wù)',’’)

注意:pandas中操作如果不明確指定參數(shù),則不會(huì)修改原數(shù)據(jù),而是返回一個(gè)新對象。

刪除列數(shù)據(jù):

del df[’commentlist’]

排序列數(shù)據(jù):

df.sort_values(by=[’kw’,’price’],axis=0,ascending=[False,True],inplace=True)

注意:排序前先用astype轉(zhuǎn)換正確的類型,如str、int或float

重新設(shè)置索引列標(biāo)簽順序:

df.columns=[’類型’,’店鋪名稱’,’點(diǎn)評(píng)數(shù)量’,’星級(jí)’,’人均消費(fèi)’,’店鋪地址’,’口味’,’環(huán)境’,’服務(wù)’]

打印前幾行數(shù)據(jù):

print(df.loc[:,[’店鋪名稱’,’口味’,’人均消費(fèi)’]].head(6))# 或者 # print(df.iloc[0:6,[1,6,4]]) # 前6行(整數(shù))# 但不能是 # print(df.loc[0:6,[’店鋪名稱’,’口味’,’人均消費(fèi)’]]) # 從索引0到索引6的行(對象)

https://www.jb51.net/article/155602.htm

綜合示例:

圖例:

Python Pandas的簡單使用教程

結(jié)果:

Python Pandas的簡單使用教程

要求:

(1)對該數(shù)據(jù)中的comment、price進(jìn)行數(shù)據(jù)清洗整理,‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬

(2)將commentlist數(shù)據(jù)拆分為“口味”、“環(huán)境”和“服務(wù)”三列后再進(jìn)行數(shù)據(jù)清洗整理,‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬

(3)去除commentlist列數(shù)據(jù)‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬

(4)將此數(shù)據(jù)按“口味”降序、“人均消費(fèi)”升序進(jìn)行排序,‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬

(5)輸出排序后前6條數(shù)據(jù)中的“店鋪名稱”、“口味”和“人均消費(fèi)”三列數(shù)據(jù)。

代碼:

import pandas as pd df=pd.read_csv(’spdata.csv’,encoding=’gbk’) #讀入文件,編碼為gbk # 注意編碼,重要#對數(shù)據(jù)進(jìn)行清洗df[’comment’]=df[’comment’].str.replace(’條點(diǎn)評(píng)’,’’)df[’price’]=df[’price’].str.replace(’人均’,’’)df[’price’]=df[’price’].str.split('¥').str[-1]df[’price’]=df[’price’].str.replace(’-’,’0’)df[’price’]=df[’price’].astype(int)df[’kw’]=df[’commentlist’].str.split().str[0].str.replace('口味',’’)df[’hj’]=df[’commentlist’].str.split().str[1].str.replace('環(huán)境',’’)df[’fw’]=df[’commentlist’].str.split().str[2].str.replace('服務(wù)',’’)del df[’commentlist’]#按口味降序,人均消費(fèi)升序進(jìn)行排序df.sort_values(by=[’kw’,’price’],axis=0,ascending=[False,True],inplace=True) #重新設(shè)置列索引標(biāo)簽df.columns=[’類型’,’店鋪名稱’,’點(diǎn)評(píng)數(shù)量’,’星級(jí)’,’人均消費(fèi)’,’店鋪地址’,’口味’,’環(huán)境’,’服務(wù)’]print(df.loc[:,[’店鋪名稱’,’口味’,’人均消費(fèi)’]].head(6))

方法二:

import pandas as pddf=pd.read_csv(’spdata.csv’,encoding=’gbk’)df[’comment’]=df[’comment’].str.replace(’條點(diǎn)評(píng)’,’’)df[’price’]=df[’price’].str.replace(’人均’,’’).str.replace(’¥’,’’).str.replace(’-’,’0’).str.replace(’ ’,’’).astype(int)df[[’kw’,’hj’,’fw’]]=df[’commentlist’].str.replace(’口味’,’’).str.replace(’環(huán)境’,’’).str.replace(’服務(wù)’,’’).str.split(expand=True).astype(float) # expand將普通的列表轉(zhuǎn)為DataFrame對象del df[’commentlist’]df.sort_values(by=[’kw’,’price’],axis=0,ascending=[False,True],inplace=True) # 注意inplace=Truedf.columns=[’類型’,’店鋪名稱’,’點(diǎn)評(píng)數(shù)量’,’星級(jí)’,’人均消費(fèi)’,’店鋪地址’,’口味’,’環(huán)境’,’服務(wù)’]print(df[[’店鋪名稱’,’口味’,’人均消費(fèi)’]].head(6))

注意:df.str.split是列表,加了expand=True之后才是DataFrame對象,或者用.str[x]提取某一列,注意不是df.str.split()[x]而是df.str.split().str[x],前者是對list(二維)操作,后者是對DataFrame操作(取某一列)

到此這篇關(guān)于Python Pandas的簡單使用教程的文章就介紹到這了,更多相關(guān)Python Pandas使用內(nèi)容請搜索好吧啦網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持好吧啦網(wǎng)!

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 阴离子_阳离子聚丙烯酰胺厂家_聚合氯化铝价格_水处理絮凝剂_巩义市江源净水材料有限公司 | 臭氧老化试验箱,高低温试验箱,恒温恒湿试验箱,防水试验设备-苏州亚诺天下仪器有限公司 | 塑钢课桌椅、学生课桌椅、课桌椅厂家-学仕教育设备首页 | 杭州代理记账费用-公司注销需要多久-公司变更监事_杭州福道财务管理咨询有限公司 | 污泥烘干机-低温干化机-工业污泥烘干设备厂家-焦作市真节能环保设备科技有限公司 | UV固化机_UVLED光固化机_UV干燥机生产厂家-上海冠顶公司专业生产UV固化机设备 | 岛津二手液相色谱仪,岛津10A液相,安捷伦二手液相,安捷伦1100液相-杭州森尼欧科学仪器有限公司 | 不锈钢水箱厂家,不锈钢保温水箱-山东桑特供水设备| 砂石生产线_石料生产线设备_制砂生产线设备价格_生产厂家-河南中誉鼎力智能装备有限公司 | 私人别墅家庭影院系统_家庭影院音响_家庭影院装修设计公司-邦牛影音 | 橡胶电子拉力机-塑料-微电脑电子拉力试验机厂家-江苏天源 | 蓝米云-专注于高性价比香港/美国VPS云服务器及海外公益型免费虚拟主机 | 臭氧老化试验箱,高低温试验箱,恒温恒湿试验箱,防水试验设备-苏州亚诺天下仪器有限公司 | 优秀的临床医学知识库,临床知识库,医疗知识库,满足电子病历四级要求,免费试用 | 单螺旋速冻机-双螺旋-流态化-隧道式-食品速冻机厂家-广州冰泉制冷 | 环境模拟实验室_液体-气体控温机_气体控温箱_无锡双润冷却科技有限公司 | 耐磨陶瓷管道_除渣器厂家-淄博浩瀚陶瓷科技有限公司 | 单柱拉力机-橡胶冲片机-哑铃裁刀-江都轩宇试验机械厂 | 东莞螺杆空压机_永磁变频空压机_节能空压机_空压机工厂批发_深圳螺杆空压机_广州螺杆空压机_东莞空压机_空压机批发_东莞空压机工厂批发_东莞市文颖设备科技有限公司 | 企小优-企业数字化转型服务商_网络推广_网络推广公司 | 海日牌清洗剂-打造带电清洗剂、工业清洗剂等清洗剂国内一线品牌 海外整合营销-独立站营销-社交媒体运营_广州甲壳虫跨境网络服务 | 两头忙,井下装载机,伸缩臂装载机,30装载机/铲车,50装载机/铲车厂家_价格-莱州巨浪机械有限公司 | DWS物流设备_扫码称重量方一体机_快递包裹分拣机_广东高臻智能装备有限公司 | 诚暄电子公司首页-线路板打样,pcb线路板打样加工制作厂家 | 捆扎机_气动捆扎机_钢带捆扎机-沈阳海鹞气动钢带捆扎机公司 | 淘气堡_室内儿童乐园_户外无动力儿童游乐设备-高乐迪(北京) | 膜结构_ETFE膜结构_膜结构厂家_膜结构设计-深圳市烨兴智能空间技术有限公司 | 电脑知识|软件|系统|数据库|服务器|编程开发|网络运营|知识问答|技术教程文章 - 好吧啦网 | 软文推广发布平台_新闻稿件自助发布_媒体邀约-澜媒宝 | 沈飞防静电地板__机房地板-深圳市沈飞防静电设备有限公司 | 全温恒温摇床-水浴气浴恒温摇床-光照恒温培养摇床-常州金坛精达仪器制造有限公司 | 软瓷_柔性面砖_软瓷砖_柔性石材_MCM软瓷厂家_湖北博悦佳软瓷 | 全自动端子机|刺破式端子压接机|全自动双头沾锡机|全自动插胶壳端子机-东莞市傅氏兄弟机械设备有限公司 | 外观设计_设备外观设计_外观设计公司_产品外观设计_机械设备外观设计_东莞工业设计公司-意品深蓝 | EPK超声波测厚仪,德国EPK测厚仪维修-上海树信仪器仪表有限公司 | 尼龙PA610树脂,尼龙PA612树脂,尼龙PA1010树脂,透明尼龙-谷骐科技【官网】 | 广州企亚 - 数码直喷、白墨印花、源头厂家、透气无手感方案服务商! | 万家财经_财经新闻_在线财经资讯网 | 合肥汽车充电桩_安徽充电桩_电动交流充电桩厂家_安徽科帝新能源科技有限公司 | 防渗膜厂家|养殖防渗膜|水产养殖防渗膜-泰安佳路通工程材料有限公司 | 连续油炸机,全自动油炸机,花生米油炸机-烟台茂源食品机械制造有限公司 |