电脑知识|欧美黑人一区二区三区|软件|欧美黑人一级爽快片淫片高清|系统|欧美黑人狂野猛交老妇|数据库|服务器|编程开发|网络运营|知识问答|技术教程文章 - 好吧啦网

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

Python實(shí)現(xiàn)隨機(jī)爬山算法

瀏覽:81日期:2022-06-28 17:15:30

隨機(jī)爬山是一種優(yōu)化算法。它利用隨機(jī)性作為搜索過程的一部分。這使得該算法適用于非線性目標(biāo)函數(shù),而其他局部搜索算法不能很好地運(yùn)行。它也是一種局部搜索算法,這意味著它修改了單個(gè)解決方案并搜索搜索空間的相對(duì)局部區(qū)域,直到找到局部最優(yōu)值為止。這意味著它適用于單峰優(yōu)化問題或在應(yīng)用全局優(yōu)化算法后使用。

在本教程中,您將發(fā)現(xiàn)用于函數(shù)優(yōu)化的爬山優(yōu)化算法完成本教程后,您將知道:

爬山是用于功能優(yōu)化的隨機(jī)局部搜索算法。 如何在Python中從頭開始實(shí)現(xiàn)爬山算法。 如何應(yīng)用爬山算法并檢查算法結(jié)果。 教程概述

本教程分為三個(gè)部分:他們是:

爬山算法 爬山算法的實(shí)現(xiàn) 應(yīng)用爬山算法的示例 爬山算法

隨機(jī)爬山算法是一種隨機(jī)局部搜索優(yōu)化算法。它以起始點(diǎn)作為輸入和步長(zhǎng),步長(zhǎng)是搜索空間內(nèi)的距離。該算法將初始點(diǎn)作為當(dāng)前最佳候選解決方案,并在提供的點(diǎn)的步長(zhǎng)距離內(nèi)生成一個(gè)新點(diǎn)。計(jì)算生成的點(diǎn),如果它等于或好于當(dāng)前點(diǎn),則將其視為當(dāng)前點(diǎn)。新點(diǎn)的生成使用隨機(jī)性,通常稱為隨機(jī)爬山。這意味著該算法可以跳過響應(yīng)表面的顛簸,嘈雜,不連續(xù)或欺騙性區(qū)域,作為搜索的一部分。重要的是接受具有相等評(píng)估的不同點(diǎn),因?yàn)樗试S算法繼續(xù)探索搜索空間,例如在響應(yīng)表面的平坦區(qū)域上。限制這些所謂的“橫向”移動(dòng)以避免無限循環(huán)也可能是有幫助的。該過程一直持續(xù)到滿足停止條件,例如最大數(shù)量的功能評(píng)估或給定數(shù)量的功能評(píng)估內(nèi)沒有改善為止。該算法之所以得名,是因?yàn)樗鼤?huì)(隨機(jī)地)爬到響應(yīng)面的山坡上,達(dá)到局部最優(yōu)值。這并不意味著它只能用于最大化目標(biāo)函數(shù)。這只是一個(gè)名字。實(shí)際上,通常,我們最小化功能而不是最大化它們。作為局部搜索算法,它可能會(huì)陷入局部最優(yōu)狀態(tài)。然而,多次重啟可以允許算法定位全局最優(yōu)。步長(zhǎng)必須足夠大,以允許在搜索空間中找到更好的附近點(diǎn),但步幅不能太大,以使搜索跳出包含局部最優(yōu)值的區(qū)域。

爬山算法的實(shí)現(xiàn)

在撰寫本文時(shí),SciPy庫(kù)未提供隨機(jī)爬山的實(shí)現(xiàn)。但是,我們可以自己實(shí)現(xiàn)它。首先,我們必須定義目標(biāo)函數(shù)和每個(gè)輸入變量到目標(biāo)函數(shù)的界限。目標(biāo)函數(shù)只是一個(gè)Python函數(shù),我們將其命名為Objective()。邊界將是一個(gè)2D數(shù)組,每個(gè)輸入變量都具有一個(gè)維度,該變量定義了變量的最小值和最大值。例如,一維目標(biāo)函數(shù)和界限將定義如下:

# objective function def objective(x): return 0 # define range for input bounds = asarray([[-5.0, 5.0]])

接下來,我們可以生成初始解作為問題范圍內(nèi)的隨機(jī)點(diǎn),然后使用目標(biāo)函數(shù)對(duì)其進(jìn)行評(píng)估。

# generate an initial point solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0]) # evaluate the initial point solution_eval = objective(solution)

現(xiàn)在我們可以遍歷定義為“ n_iterations”的算法的預(yù)定義迭代次數(shù),例如100或1,000。

# run the hill climb for i in range(n_iterations):

算法迭代的第一步是采取步驟。這需要預(yù)定義的“ step_size”參數(shù),該參數(shù)相對(duì)于搜索空間的邊界。我們將采用高斯分布的隨機(jī)步驟,其中均值是我們的當(dāng)前點(diǎn),標(biāo)準(zhǔn)偏差由“ step_size”定義。這意味著大約99%的步驟將在當(dāng)前點(diǎn)的(3 * step_size)之內(nèi)。

# take a step candidate = solution + randn(len(bounds)) * step_size

我們不必采取這種方式。您可能希望使用0到步長(zhǎng)之間的均勻分布。例如:

# take a step candidate = solution + rand(len(bounds)) * step_size

接下來,我們需要評(píng)估具有目標(biāo)函數(shù)的新候選解決方案。

# evaluate candidate point candidte_eval = objective(candidate)

然后,我們需要檢查此新點(diǎn)的評(píng)估結(jié)果是否等于或優(yōu)于當(dāng)前最佳點(diǎn),如果是,則用此新點(diǎn)替換當(dāng)前最佳點(diǎn)。

# check if we should keep the new point if candidte_eval <= solution_eval: # store the new point solution, solution_eval = candidate, candidte_eval # report progress print(’>%d f(%s) = %.5f’ % (i, solution, solution_eval))

就是這樣。我們可以將此爬山算法實(shí)現(xiàn)為可重用函數(shù),該函數(shù)將目標(biāo)函數(shù)的名稱,每個(gè)輸入變量的范圍,總迭代次數(shù)和步驟作為參數(shù),并返回找到的最佳解決方案及其評(píng)估。

# hill climbing local search algorithm def hillclimbing(objective, bounds, n_iterations, step_size): # generate an initial point solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0]) # evaluate the initial point solution_eval = objective(solution) # run the hill climb for i in range(n_iterations): # take a step candidate = solution + randn(len(bounds)) * step_size # evaluate candidate point candidte_eval = objective(candidate) # check if we should keep the new point if candidte_eval <= solution_eval: # store the new point solution, solution_eval = candidate, candidte_eval # report progress print(’>%d f(%s) = %.5f’ % (i, solution, solution_eval)) return [solution, solution_eval]

現(xiàn)在,我們知道了如何在Python中實(shí)現(xiàn)爬山算法,讓我們看看如何使用它來優(yōu)化目標(biāo)函數(shù)。

應(yīng)用爬山算法的示例

在本節(jié)中,我們將把爬山優(yōu)化算法應(yīng)用于目標(biāo)函數(shù)。首先,讓我們定義目標(biāo)函數(shù)。我們將使用一個(gè)簡(jiǎn)單的一維x ^ 2目標(biāo)函數(shù),其邊界為[-5,5]。下面的示例定義了函數(shù),然后為輸入值的網(wǎng)格創(chuàng)建了函數(shù)響應(yīng)面的折線圖,并用紅線標(biāo)記了f(0.0)= 0.0處的最佳值。

# convex unimodal optimization function from numpy import arange from matplotlib import pyplot # objective function def objective(x): return x[0]**2.0 # define range for input r_min, r_max = -5.0, 5.0 # sample input range uniformly at 0.1 increments inputs = arange(r_min, r_max, 0.1) # compute targets results = [objective([x]) for x in inputs] # create a line plot of input vs result pyplot.plot(inputs, results) # define optimal input value x_optima = 0.0 # draw a vertical line at the optimal input pyplot.axvline(x=x_optima, ls=’--’, color=’red’) # show the plot pyplot.show()

運(yùn)行示例將創(chuàng)建目標(biāo)函數(shù)的折線圖,并清晰地標(biāo)記函數(shù)的最優(yōu)值。

Python實(shí)現(xiàn)隨機(jī)爬山算法

接下來,我們可以將爬山算法應(yīng)用于目標(biāo)函數(shù)。首先,我們將播種偽隨機(jī)數(shù)生成器。通常這不是必需的,但是在這種情況下,我想確保每次運(yùn)行算法時(shí)都得到相同的結(jié)果(相同的隨機(jī)數(shù)序列),以便以后可以繪制結(jié)果。

# seed the pseudorandom number generator seed(5)

接下來,我們可以定義搜索的配置。在這種情況下,我們將搜索算法的1,000次迭代,并使用0.1的步長(zhǎng)。假設(shè)我們使用的是高斯函數(shù)來生成步長(zhǎng),這意味著大約99%的所有步長(zhǎng)將位于給定點(diǎn)(0.1 * 3)的距離內(nèi),例如 三個(gè)標(biāo)準(zhǔn)差。

n_iterations = 1000 # define the maximum step size step_size = 0.1

接下來,我們可以執(zhí)行搜索并報(bào)告結(jié)果。

# perform the hill climbing search best, score = hillclimbing(objective, bounds, n_iterations, step_size) print(’Done!’) print(’f(%s) = %f’ % (best, score))

結(jié)合在一起,下面列出了完整的示例。

# hill climbing search of a one-dimensional objective function from numpy import asarray from numpy.random import randn from numpy.random import rand from numpy.random import seed # objective function def objective(x): return x[0]**2.0 # hill climbing local search algorithm def hillclimbing(objective, bounds, n_iterations, step_size): # generate an initial point solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0]) # evaluate the initial point solution_eval = objective(solution) # run the hill climb for i in range(n_iterations): # take a step candidate = solution + randn(len(bounds)) * step_size # evaluate candidate point candidte_eval = objective(candidate) # check if we should keep the new point if candidte_eval <= solution_eval: # store the new point solution, solution_eval = candidate, candidte_eval # report progress print(’>%d f(%s) = %.5f’ % (i, solution, solution_eval)) return [solution, solution_eval] # seed the pseudorandom number generator seed(5) # define range for input bounds = asarray([[-5.0, 5.0]]) # define the total iterations n_iterations = 1000 # define the maximum step size step_size = 0.1 # perform the hill climbing search best, score = hillclimbing(objective, bounds, n_iterations, step_size) print(’Done!’) print(’f(%s) = %f’ % (best, score))

運(yùn)行該示例將報(bào)告搜索進(jìn)度,包括每次檢測(cè)到改進(jìn)時(shí)的迭代次數(shù),該函數(shù)的輸入以及來自目標(biāo)函數(shù)的響應(yīng)。搜索結(jié)束時(shí),找到最佳解決方案,并報(bào)告其評(píng)估結(jié)果。在這種情況下,我們可以看到在算法的1,000次迭代中有36處改進(jìn),并且該解決方案非常接近于0.0的最佳輸入,其計(jì)算結(jié)果為f(0.0)= 0.0。

>1 f([-2.74290923]) = 7.52355 >3 f([-2.65873147]) = 7.06885 >4 f([-2.52197291]) = 6.36035 >5 f([-2.46450214]) = 6.07377 >7 f([-2.44740961]) = 5.98981 >9 f([-2.28364676]) = 5.21504 >12 f([-2.19245939]) = 4.80688 >14 f([-2.01001538]) = 4.04016 >15 f([-1.86425287]) = 3.47544 >22 f([-1.79913002]) = 3.23687 >24 f([-1.57525573]) = 2.48143 >25 f([-1.55047719]) = 2.40398 >26 f([-1.51783757]) = 2.30383 >27 f([-1.49118756]) = 2.22364 >28 f([-1.45344116]) = 2.11249 >30 f([-1.33055275]) = 1.77037 >32 f([-1.17805016]) = 1.38780 >33 f([-1.15189314]) = 1.32686 >36 f([-1.03852644]) = 1.07854 >37 f([-0.99135322]) = 0.98278 >38 f([-0.79448984]) = 0.63121 >39 f([-0.69837955]) = 0.48773 >42 f([-0.69317313]) = 0.48049 >46 f([-0.61801423]) = 0.38194 >48 f([-0.48799625]) = 0.23814 >50 f([-0.22149135]) = 0.04906 >54 f([-0.20017144]) = 0.04007 >57 f([-0.15994446]) = 0.02558 >60 f([-0.15492485]) = 0.02400 >61 f([-0.03572481]) = 0.00128 >64 f([-0.03051261]) = 0.00093 >66 f([-0.0074283]) = 0.00006 >78 f([-0.00202357]) = 0.00000 >119 f([0.00128373]) = 0.00000 >120 f([-0.00040911]) = 0.00000 >314 f([-0.00017051]) = 0.00000 Done! f([-0.00017051]) = 0.000000

以線圖的形式查看搜索的進(jìn)度可能很有趣,該線圖顯示了每次改進(jìn)后最佳解決方案的評(píng)估變化。每當(dāng)有改進(jìn)時(shí),我們就可以更新hillclimbing()來跟蹤目標(biāo)函數(shù)的評(píng)估,并返回此分?jǐn)?shù)列表

# hill climbing local search algorithm def hillclimbing(objective, bounds, n_iterations, step_size): # generate an initial point solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0]) # evaluate the initial point solution_eval = objective(solution) # run the hill climb scores = list() scores.append(solution_eval) for i in range(n_iterations): # take a step candidate = solution + randn(len(bounds)) * step_size # evaluate candidate point candidte_eval = objective(candidate) # check if we should keep the new point if candidte_eval <= solution_eval: # store the new point solution, solution_eval = candidate, candidte_eval # keep track of scores scores.append(solution_eval) # report progress print(’>%d f(%s) = %.5f’ % (i, solution, solution_eval)) return [solution, solution_eval, scores]

然后,我們可以創(chuàng)建這些分?jǐn)?shù)的折線圖,以查看搜索過程中發(fā)現(xiàn)的每個(gè)改進(jìn)的目標(biāo)函數(shù)的相對(duì)變化

# line plot of best scores pyplot.plot(scores, ’.-’) pyplot.xlabel(’Improvement Number’) pyplot.ylabel(’Evaluation f(x)’) pyplot.show()

結(jié)合在一起,下面列出了執(zhí)行搜索并繪制搜索過程中改進(jìn)解決方案的目標(biāo)函數(shù)得分的完整示例。

# hill climbing search of a one-dimensional objective function from numpy import asarray from numpy.random import randn from numpy.random import rand from numpy.random import seed from matplotlib import pyplot # objective function def objective(x): return x[0]**2.0 # hill climbing local search algorithm def hillclimbing(objective, bounds, n_iterations, step_size): # generate an initial point solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0]) # evaluate the initial point solution_eval = objective(solution) # run the hill climb scores = list() scores.append(solution_eval) for i in range(n_iterations): # take a step candidate = solution + randn(len(bounds)) * step_size # evaluate candidate point candidte_eval = objective(candidate) # check if we should keep the new point if candidte_eval <= solution_eval: # store the new point solution, solution_eval = candidate, candidte_eval # keep track of scores scores.append(solution_eval) # report progress print(’>%d f(%s) = %.5f’ % (i, solution, solution_eval)) return [solution, solution_eval, scores] # seed the pseudorandom number generator seed(5) # define range for input bounds = asarray([[-5.0, 5.0]]) # define the total iterations n_iterations = 1000 # define the maximum step size step_size = 0.1 # perform the hill climbing search best, score, scores = hillclimbing(objective, bounds, n_iterations, step_size) print(’Done!’) print(’f(%s) = %f’ % (best, score)) # line plot of best scores pyplot.plot(scores, ’.-’) pyplot.xlabel(’Improvement Number’) pyplot.ylabel(’Evaluation f(x)’) pyplot.show()

運(yùn)行示例將執(zhí)行搜索,并像以前一樣報(bào)告結(jié)果。創(chuàng)建一個(gè)線形圖,顯示在爬山搜索期間每個(gè)改進(jìn)的目標(biāo)函數(shù)評(píng)估。在搜索過程中,我們可以看到目標(biāo)函數(shù)評(píng)估發(fā)生了約36個(gè)變化,隨著算法收斂到最優(yōu)值,初始變化較大,而在搜索結(jié)束時(shí)變化很小,難以察覺。

Python實(shí)現(xiàn)隨機(jī)爬山算法

鑒于目標(biāo)函數(shù)是一維的,因此可以像上面那樣直接繪制響應(yīng)面。通過將在搜索過程中找到的最佳候選解決方案繪制為響應(yīng)面中的點(diǎn),來回顧搜索的進(jìn)度可能會(huì)很有趣。我們期望沿著響應(yīng)面到達(dá)最優(yōu)點(diǎn)的一系列點(diǎn)。這可以通過首先更新hillclimbing()函數(shù)以跟蹤每個(gè)最佳候選解決方案在搜索過程中的位置來實(shí)現(xiàn),然后返回最佳解決方案列表來實(shí)現(xiàn)。

# hill climbing local search algorithm def hillclimbing(objective, bounds, n_iterations, step_size): # generate an initial point solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0]) # evaluate the initial point solution_eval = objective(solution) # run the hill climb solutions = list() solutions.append(solution) for i in range(n_iterations): # take a step candidate = solution + randn(len(bounds)) * step_size # evaluate candidate point candidte_eval = objective(candidate) # check if we should keep the new point if candidte_eval <= solution_eval: # store the new point solution, solution_eval = candidate, candidte_eval # keep track of solutions solutions.append(solution) # report progress print(’>%d f(%s) = %.5f’ % (i, solution, solution_eval)) return [solution, solution_eval, solutions]

然后,我們可以創(chuàng)建目標(biāo)函數(shù)響應(yīng)面的圖,并像以前那樣標(biāo)記最優(yōu)值。

# sample input range uniformly at 0.1 increments inputs = arange(bounds[0,0], bounds[0,1], 0.1) # create a line plot of input vs result pyplot.plot(inputs, [objective([x]) for x in inputs], ’--’) # draw a vertical line at the optimal input pyplot.axvline(x=[0.0], ls=’--’, color=’red’)

最后,我們可以將搜索找到的候選解的序列繪制成黑點(diǎn)。

# plot the sample as black circles pyplot.plot(solutions, [objective(x) for x in solutions], ’o’, color=’black’)

結(jié)合在一起,下面列出了在目標(biāo)函數(shù)的響應(yīng)面上繪制改進(jìn)解序列的完整示例。

# hill climbing search of a one-dimensional objective function from numpy import asarray from numpy import arange from numpy.random import randn from numpy.random import rand from numpy.random import seed from matplotlib import pyplot # objective function def objective(x): return x[0]**2.0 # hill climbing local search algorithm def hillclimbing(objective, bounds, n_iterations, step_size): # generate an initial point solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0]) # evaluate the initial point solution_eval = objective(solution) # run the hill climb solutions = list() solutions.append(solution) for i in range(n_iterations): # take a step candidate = solution + randn(len(bounds)) * step_size # evaluate candidate point candidte_eval = objective(candidate) # check if we should keep the new point if candidte_eval <= solution_eval: # store the new point solution, solution_eval = candidate, candidte_eval # keep track of solutions solutions.append(solution) # report progress print(’>%d f(%s) = %.5f’ % (i, solution, solution_eval)) return [solution, solution_eval, solutions] # seed the pseudorandom number generator seed(5) # define range for input bounds = asarray([[-5.0, 5.0]]) # define the total iterations n_iterations = 1000 # define the maximum step size step_size = 0.1 # perform the hill climbing search best, score, solutions = hillclimbing(objective, bounds, n_iterations, step_size) print(’Done!’) print(’f(%s) = %f’ % (best, score)) # sample input range uniformly at 0.1 increments inputs = arange(bounds[0,0], bounds[0,1], 0.1) # create a line plot of input vs result pyplot.plot(inputs, [objective([x]) for x in inputs], ’--’) # draw a vertical line at the optimal input pyplot.axvline(x=[0.0], ls=’--’, color=’red’) # plot the sample as black circles pyplot.plot(solutions, [objective(x) for x in solutions], ’o’, color=’black’) pyplot.show()

運(yùn)行示例將執(zhí)行爬山搜索,并像以前一樣報(bào)告結(jié)果。像以前一樣創(chuàng)建一個(gè)響應(yīng)面圖,顯示函數(shù)的熟悉的碗形,并用垂直的紅線標(biāo)記函數(shù)的最佳狀態(tài)。在搜索過程中找到的最佳解決方案的順序顯示為黑點(diǎn),沿著碗形延伸到最佳狀態(tài)。

Python實(shí)現(xiàn)隨機(jī)爬山算法

以上就是Python實(shí)現(xiàn)隨機(jī)爬山算法的詳細(xì)內(nèi)容,更多關(guān)于Python 隨機(jī)爬山算法的資料請(qǐng)關(guān)注好吧啦網(wǎng)其它相關(guān)文章!

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 济南菜鸟驿站广告|青岛快递车车体|社区媒体-抖音|墙体广告-山东揽胜广告传媒有限公司 | 头条搜索极速版下载安装免费新版,头条搜索极速版邀请码怎么填写? - 欧远全 | 大米加工设备|大米加工机械|碾米成套设备|大米加工成套设备-河南成立粮油机械有限公司 | 电动葫芦|手拉葫芦|环链电动葫芦|微型电动葫芦-北京市凌鹰起重机械有限公司 | KBX-220倾斜开关|KBW-220P/L跑偏开关|拉绳开关|DHJY-I隔爆打滑开关|溜槽堵塞开关|欠速开关|声光报警器-山东卓信有限公司 | 厂房出租_厂房出售_产业园区招商_工业地产&nbsp;-&nbsp;中工招商网 | 石英粉,滑石粉厂家,山东滑石粉-莱州市向阳滑石粉有限公司 | 石家庄装修设计_室内家装设计_别墅装饰装修公司-石家庄金舍装饰官网 | 数码管_LED贴片灯_LED数码管厂家-无锡市冠卓电子科技有限公司 | 权威废金属|废塑料|废纸|废铜|废钢价格|再生资源回收行情报价中心-中废网 | 免联考国际MBA_在职MBA报考条件/科目/排名-MBA信息网 | 【德信自动化】点胶机_全自动点胶机_自动点胶机厂家_塑料热压机_自动螺丝机-深圳市德信自动化设备有限公司 | 逗网红-抖音网红-快手网红-各大平台网红物品导航 | 私人别墅家庭影院系统_家庭影院音响_家庭影院装修设计公司-邦牛影音 | 无水硫酸铝,硫酸铝厂家-淄博双赢新材料科技有限公司 | 电磁铁_小型推拉电磁铁_电磁阀厂家-深圳市宗泰电机有限公司 | 精密机械零件加工_CNC加工_精密加工_数控车床加工_精密机械加工_机械零部件加工厂 | 温室大棚建设|水肥一体化|物联网系统| 土壤墒情监测站_土壤墒情监测仪_土壤墒情监测系统_管式土壤墒情站-山东风途物联网 | 上海佳武自动化科技有限公司 | 电梯乘运质量测试仪_电梯安全评估测试仪-武汉懿之刻 | 西安中国国际旅行社(西安国旅) | 超声波清洗机_大型超声波清洗机_工业超声波清洗设备-洁盟清洗设备 | 太空舱_民宿太空舱厂家_移动房屋太空舱价格-豪品建筑 | 硅胶管挤出机厂家_硅胶挤出机生产线_硅胶条挤出机_臣泽智能装备 贵州科比特-防雷公司厂家提供贵州防雷工程,防雷检测,防雷接地,防雷设备价格,防雷产品报价服务-贵州防雷检测公司 | 电动百叶窗,开窗器,电动遮阳百叶,电动开窗机生产厂家-徐州鑫友工控科技发展有限公司 | 嘉兴恒升声级计-湖南衡仪声级计-杭州爱华多功能声级计-上海邦沃仪器设备有限公司 | 煤粉取样器-射油器-便携式等速飞灰取样器-连灵动 | 布袋式除尘器|木工除尘器|螺旋输送机|斗式提升机|刮板输送机|除尘器配件-泊头市德佳环保设备 | NMRV减速机|铝合金减速机|蜗轮蜗杆减速机|NMRV减速机厂家-东莞市台机减速机有限公司 | 智慧食堂_食堂管理系统_食堂订餐_食堂消费系统—客易捷 | 无线对讲-无线对讲系统解决方案-重庆畅博通信 | 办公室家具公司_办公家具品牌厂家_森拉堡办公家具【官网】 | 杭州实验室尾气处理_实验台_实验室家具_杭州秋叶实验设备有限公司 | 电缆隧道在线监测-智慧配电站房-升压站在线监测-江苏久创电气科技有限公司 | 锂辉石检测仪器,水泥成分快速分析仪-湘潭宇科分析仪器有限公司 | 砂石生产线_石料生产线设备_制砂生产线设备价格_生产厂家-河南中誉鼎力智能装备有限公司 | 铝箔-铝板-花纹铝板-铝型材-铝棒管-上海百亚金属材料有限公司 | 横河变送器-横河压力变送器-EJA变送器-EJA压力变送器-「泉蕴仪表」 | 山东信蓝建设有限公司官网| 洁净实验室工程-成都手术室净化-无尘车间装修-四川华锐净化公司-洁净室专业厂家 |