电脑知识|欧美黑人一区二区三区|软件|欧美黑人一级爽快片淫片高清|系统|欧美黑人狂野猛交老妇|数据库|服务器|编程开发|网络运营|知识问答|技术教程文章 - 好吧啦网

您的位置:首頁技術文章
文章詳情頁

Python基礎之numpy庫的使用

瀏覽:78日期:2022-06-20 17:41:28
numpy庫概述

numpy庫處理的最基礎數據類型是由同種元素構成的多維數組,簡稱為“數組”

數組的特點

數組中所有元素的類型必須相同 數組中元素可以用整數索引 序號從0開始

ndarray類型的維度叫做軸,軸的個數叫做秩

numpy庫的解析

由于numpy庫中函數較多而且容易與常用命名混淆,建議采用如下方法引用numpy庫

import numpy as np

numpy庫中常用的創建數組函數

函數 描述 np.array([x,y,z],dtype=int) 從Python列表和元組中創建數組 np.arange(x,y,i) 創建一個由x到y,以i為步長的數組 np.linspace(x,y,n) 創建一個由x到y,等分成n個元素的數組 np.indices((m,n)) 創建一個m行n列的矩陣 np.random.rand(m,n) 創建一個m行n列的隨機數組 np.ones((m,n),dtype) 創建一個m行n列全1的數組,dtype是數據類型 np.empty((m,n),dtype) 創建一個m行n列全0的數組,dtype是數據類型

import numpy as npa1 = np.array([1,2,3,4,5,6])a2 = np.arange(1,10,3)a3 = np.linspace(1,10,3)a4 = np.indices((3,4))a5 = np.random.rand(3,4)a6 = np.ones((3,4),int)a7 = np.empty((3,4),int)print(a1)print('===========================================================')print(a2)print('===========================================================')print(a3)print('===========================================================')print(a4)print('===========================================================')print(a5)print('===========================================================')print(a6)print('===========================================================')print(a7)=================================================================================[1 2 3 4 5 6]===========================================================[1 4 7]===========================================================[ 1. 5.5 10. ]===========================================================[[[0 0 0 0] [1 1 1 1] [2 2 2 2]] [[0 1 2 3] [0 1 2 3] [0 1 2 3]]]===========================================================[[0.00948155 0.7145306 0.50490391 0.69827703] [0.18164292 0.78440752 0.75091258 0.31184394] [0.17199081 0.3789 0.69886588 0.0476422 ]]===========================================================[[1 1 1 1] [1 1 1 1] [1 1 1 1]]===========================================================[[0 0 0 0] [0 0 0 0] [0 0 0 0]]

在建立一個簡單的數組后,可以查看數組的屬性

屬性 描述 ndarray.ndim 數組軸的個數,也被稱為秩 ndarray.shape 數組在每個維度上大小的整數元組 ndarray.size 數組元素的總個數 ndarray.dtype 數組元素的數據類型,dtype類型可以用于創建數組 ndarray.itemsize 數組中每個元素的字節大小 ndarray.data 包含實際數組元素的緩沖區地址 ndarray.flat 數組元素的迭代器

import numpy as npa6 = np.ones((3,4),int)print(a6)print('=========================================')print(a6.ndim)print('=========================================')print(a6.shape)print('=========================================')print(a6.size)print('=========================================')print(a6.dtype)print('=========================================')print(a6.itemsize)print('=========================================')print(a6.data)print('=========================================')print(a6.flat)=================================================================================[[1 1 1 1] [1 1 1 1] [1 1 1 1]]=========================================2=========================================(3, 4)=========================================12=========================================int32=========================================4=========================================<memory at 0x0000020D79545908>=========================================<numpy.flatiter object at 0x0000020D103B1180>

數組在numpy中被當做對象,可以采用< a >.< b >()方式調用一些方法。

ndarray類的形態操作方法

方法 描述 ndarray.reshape(n,m) 不改變數組ndarray,返回一個維度為(n,m)的數組 ndarray.resize(new_shape) 與reshape()作用相同,直接修改數組ndarray ndarray.swapaxes(ax1,ax2) 將數組n個維度中任意兩個維度進行調換 ndarray.flatten() 對數組進行降維,返回一個折疊后的一維數組 ndarray.ravel() 作用同np.flatten(),但返回的是一個視圖

ndarray類的索引和切片方法

方法 描述 x[i] 索引第i個元素 x[-i] 從后向前索引第i個元素 x[n:m] 默認步長為1,從前向后索引,不包含m x[-m:-n] 默認步長為1,從前向后索引,結束位置為n x[n: m :i] 指定i步長的由n到m的索引

除了ndarray類型方法外,numpy庫提供了一匹運算函數

函數 描述 np.add(x1,x2[,y]) y = x1 + x2 np.subtract(x1,x2[,y]) y = x1 -x2 np.multiply(x1,x2[,y]) y = x1 * x2 np.divide(x1,x2[,y]) y = x1 /x2 np floor_divide(x1,x2[,y]) y = x1 // x2 np.negative(x[,y]) y = -x np.power(x1,x2[,y]) y = x1 ** x2 np.remainder(x1,x2[,y]) y = x1 % x2

numpy庫的比較運算函數

函數 符號描述 np.equal(x1,x2[,y]) y = x1 == x2 np.not_equal(x1,x2[,y]) y = x1 != x2 np.less(x1,x2,[,y]) y = x1 < x2 np.less_equal(x1,x2,[,y]) y = x1 < = x2 np.greater(x1,x2,[,y]) y = x1 > x2 np.greater_equal(x1,x2,[,y]) y >= x1 >= x2 np.where(condition[x,y]) 根據條件判斷是輸出x還是y

numpy庫的其他運算函數

函數 描述 np.abs(x) 計算濟源元素的整形、浮點、或復數的絕對值 np.sqrt(x) 計算每個元素的平方根 np.squre(x) 計算每個元素的平方 np.sign(x) 計算每個元素的符號1(+),0,-1(-) np.ceil(x) 計算大于或等于每個元素的最小值 np.floor(x) 計算小于或等于每個元素的最大值 np.rint(x[,out]) 圓整,取每個元素為最近的整數,保留數據類型 np.exp(x[,out]) 計算每個元素的指數值 np.log(x),np.log10(x),np.log2(x) 計算自然對數(e),基于10,,2的對數,log(1+x)

到此這篇關于Python基礎之numpy庫的使用的文章就介紹到這了,更多相關Python numpy庫的使用內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 环氧乙烷灭菌器_压力蒸汽灭菌器_低温等离子过氧化氢灭菌器 _低温蒸汽甲醛灭菌器_清洗工作站_医用干燥柜_灭菌耗材-环氧乙烷灭菌器_脉动真空压力蒸汽灭菌器_低温等离子灭菌设备_河南省三强医疗器械有限责任公司 | 27PR跨境电商导航 | 专注外贸跨境电商 | SPC工作站-连杆综合检具-表盘气动量仪-内孔缺陷检测仪-杭州朗多检测仪器有限公司 | 塑料撕碎机_编织袋撕碎机_废纸撕碎机_生活垃圾撕碎机_废铁破碎机_河南鑫世昌机械制造有限公司 | 卫生纸复卷机|抽纸机|卫生纸加工设备|做卫生纸机器|小型卫生纸加工需要什么设备|卫生纸机器设备多少钱一台|许昌恒源纸品机械有限公司 | 报警器_家用防盗报警器_烟雾报警器_燃气报警器_防盗报警系统厂家-深圳市刻锐智能科技有限公司 | 真丝围巾|真丝丝巾|羊绒围巾|围巾品牌|浙江越缇围巾厂家定制 | 水厂污泥地磅|污泥处理地磅厂家|地磅无人值守称重系统升级改造|地磅自动称重系统维修-河南成辉电子科技有限公司 | 南京展台搭建-南京展会设计-南京展览设计公司-南京展厅展示设计-南京汇雅展览工程有限公司 | 多功能真空滤油机_润滑油全自动滤油机_高效真空滤油机价格-重庆润华通驰 | 免费网站网址收录网_海企优网站推荐平台| 珠海网站建设_响应网站建设_珠海建站公司_珠海网站设计与制作_珠海网讯互联 | 吲哚菁绿衍生物-酶底物法大肠菌群检测试剂-北京和信同通科技发展有限公司 | 通风天窗,通风气楼,屋顶通风天窗,屋顶通风天窗公司 | 磁力抛光研磨机_超声波清洗机厂家_去毛刺设备-中锐达数控 | 达利园物流科技集团-| 20年条刷老厂-条刷-抛光-工业毛刷辊-惠众毛刷| TPM咨询,精益生产管理,5S,6S现场管理培训_华谋咨询公司 | 阜阳在线-阜阳综合门户| 上海平衡机-单面卧式动平衡机-万向节动平衡机-圈带动平衡机厂家-上海申岢动平衡机制造有限公司 | 仪器仪表网 - 永久免费的b2b电子商务平台 | 玻璃钢型材-玻璃钢风管-玻璃钢管道,生产厂家-[江苏欧升玻璃钢制造有限公司] | 艺术生文化课培训|艺术生文化课辅导冲刺-济南启迪学校 | 滚塑PE壳体-PE塑料浮球-警示PE浮筒-宁波君益塑业有限公司 | 电动百叶窗,开窗器,电动遮阳百叶,电动开窗机生产厂家-徐州鑫友工控科技发展有限公司 | 盛源真空泵|空压机-浙江盛源空压机制造有限公司-【盛源官网】 | 华溶溶出仪-Memmert稳定箱-上海协烁仪器科技有限公司 | 非小号行情 - 专业的区块链、数字藏品行情APP、金色财经官网 | 亮化工程,亮化设计,城市亮化工程,亮化资质合作,长沙亮化照明,杰奥思【官网】 | 超声波成孔成槽质量检测仪-压浆机-桥梁预应力智能张拉设备-上海硕冠检测设备有限公司 | 杜甫仪器官网|实验室平行反应器|升降水浴锅|台式低温循环泵 | 伺服电机维修、驱动器维修「安川|三菱|松下」伺服维修公司-深圳华创益 | C形臂_动态平板DR_动态平板胃肠机生产厂家制造商-普爱医疗 | 国产离子色谱仪,红外分光测油仪,自动烟尘烟气测试仪-青岛埃仑通用科技有限公司 | 法兰连接型电磁流量计-蒸汽孔板节流装置流量计-北京凯安达仪器仪表有限公司 | 领袖户外_深度旅游、摄影旅游、小团慢旅行、驴友网 | 武汉印刷厂-不干胶标签印刷厂-武汉不干胶印刷-武汉标签印刷厂-武汉标签制作 - 善进特种标签印刷厂 | 磁棒电感生产厂家-电感器厂家-电感定制-贴片功率电感供应商-棒形电感生产厂家-苏州谷景电子有限公司 | 河南凯邦机械制造有限公司| 厂厂乐-汇聚海量采购信息的B2B微营销平台-厂厂乐官网 | 等离子空气净化器_医用空气消毒机_空气净化消毒机_中央家用新风系统厂家_利安达官网 |